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Abstract

Study of Computational Image Matching Techniques:
Improving Our View of Biomedical Image Data

by

Ahmadreza Baghaie

The University of Wisconsin–Milwaukee, 2016
Under the Supervision of Professor Zeyun Yu and Professor Roshan M. D’Souza

Image matching techniques are proven to be necessary in various fields of science and

engineering, with many new methods and applications introduced over the years. In this

PhD thesis, several computational image matching methods are introduced and investi-

gated for improving the analysis of various biomedical image data. These improvements

include the use of matching techniques for enhancing visualization of cross-sectional imag-

ing modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging

(MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D

reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work

greatly improves the process of data interpretation of image data with far reaching conse-

quences for basic sciences research. The thesis starts with a general notion of the problem

of image matching followed by an overview of the topics covered in the thesis. This is

followed by introduction and investigation of several applications of image matching/reg-

istration in biomdecial image processing: a) registration-based slice interpolation, b) fast

mesh-based deformable image registration and c) use of simultaneous rigid registration

and Robust Principal Component Analysis (RPCA) for speckle noise reduction of reti-

nal OCT images. Moving towards a different notion of image matching/correspondence,

the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction

of microscopic samples from 2D images captured by SEM, is considered next. Start-

ing from sparse feature-based matching techniques, an extensive analysis is provided for

using several well-known feature detector/descriptor techniques, namely ORB, BRIEF,

SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter con-
ii
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tains qualitative and quantitative comparisons in order to reveal the shortcomings of the

sparse feature-based techniques. This is followed by introduction of a novel framework

using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM

images. As will be shown, the proposed framework results in better reconstructions when

compared with state-of-the-art sparse-feature based techniques. Even though the pro-

posed framework produces satisfactory results, there is room for improvements. These

improvements become more necessary when dealing with higher complexity microscopic

samples imaged by SEM as well as in cases with large displacements between correspond-

ing points in micrographs. Therefore, based on the proposed framework, a new approach

is proposed for high quality 3D reconstruction of microscopic samples. While in case of

having simpler microscopic samples the performance of the two proposed techniques are

comparable, the new technique results in more truthful reconstruction of highly complex

samples. The thesis is concluded with an overview of the thesis and also pointers regard-

ing future directions of the research using both multi-view and photometric techniques

for 3D reconstruction of SEM images.1

1Because of the vast extent of topics covered in this dissertation, each chapter is written in a self-
contained manner for a more rigorous presentation of the works.
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Chapter 1

Introduction

Image matching techniques have been a crucial component in modern general-purpose

and biomedical image processing problems. Generally speaking, the matching can be

defined as the attempt to find a meaningful correspondence between pixels/features of an

image with another. As one would think, this definition is very general, however, it can

be used as means to dissect the problem of image matching and determine the various

components involved. In another words, various image matching can be differentiated by

the answers that they give to these simple questions: a) what constitutes an attempt? b)

what is considered as a meaningful correspondence? c) matching of pixels or features?

Image matching techniques can be categorized into four major classes [219]: 1) mul-

tiview analysis techniques, 2) multitemporal analysis techniques, 3) multimodal analysis

techniques and 4) scene to model matching techniques. In the first class, several images of

the same scene are captured, although from different viewpoints. Matching techniques in

this class aim to create a larger two dimensional view of the scene or a three dimensional

representation of the scene given the underlying projective transformations involved. Ex-

amples of such class include image mosaicing and also Shape from Stereo (SfS) and Shape

from Motion (SfM). On the other hand, in multitemporal analysis, images of the same

scene are captured at different times in order to track and evaluate changes in the scene

between consecutive acquisitions. Examples may include landscape planning and global

land usage in remote sensing, motion tracking and optical flow estimation 1 in computer

vision applications, and monitoring of tumor evolution in medical image processing. In

the third class, even though the images are captured from the same scene, however, dif-

ferent sensors are employed for achieving a more complex and detailed representation.

1Optical flow estimation does not necessarily requires fixed viewpoint. However, given its general
definition which involves estimating motions of intensity patterns, it can be considered partly as a
multitemporal analysis problem.
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Fusion of the information from these different sensors usually requires pre-processing steps

for accurate alignment of the images. Examples can be found in medical image applica-

tions for combining anatomical imaging modalities (Magnetic Resonance Imaging (MRI)

or Computer Tomography (CT)) with functional/metabolic activity images captured by

Positron Emission Tomography (PET), Single Photon Emission Computed Tomography

(SPECT) etc. In the last class, images of a scene and a model of the scene are matched.

Examples are target template matching in computer vision applications or comparison of

anatomical atlases with patient’s images or specimen classification.

Image matching is implemented using two major classes of methods:: a) Parametric

and b) Non-parametric [134]. Parametric matching methods are based on a finite set

of parameters or image features. These methods include rigid, affine, land-mark based,

principal axes-based, FFT-based, optimal linear and spline-based matching approaches,

to name a few. Unlike parametric matching methods, the non-parametric methods are not

limited to a finite set of parameters. Diffusion registration, fluid registration, curvature

registration and elastic registration [58] as well as optical flow estimation techniques [62]

and stereo matching approaches [169] are a few examples of this class of methods.

In general, image matching is considered as an ill-posed inverse problem. Therefore

the process of solving the problem may consist three components [178]: 1) a deformation

model, 2) an objective function to be optimized and 3) an optimization method. A

general objective function for matching a template image T to a reference image R can

be defined as:

E[u] = D[R, T ◦ u] + αS[u] (1.1)

The left hand side of the equation is the energy or objective function which needs

to be optimized; u is the displacement field. On the right, we have two terms: D and

S. The first term is called (dis)similarity measure or distance measure which acts as

the matching criterion between the reference image and the deformed template image.

Depending on the choice of this term, the objective function needs to be either minimized

or maximized [151]. The second term, S is the regularization term which imposes ad-

ditional constraints on the deformation. Due to ill-posedness of image registration, this
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term is needed to be able to have reasonable transformations. This term dictates the

validity of transformation. The parameter α is a weight which indicates the amount of

regularization. Even though the above formulation is very general, all of image matching

methods can be formulated in a same form, implicitly or explicitly. In this PhD disserta-

tion, several problems are considered which all involve some form of image matching at

their very core.

Chapter 2 of the dissertation introduces and discusses several applications of image

matching in biomedical image processing. Image interpolation/super-resolution is a well-

known topic in image processing. In its basic form image interpolation tries to upsample

the image to an image with higher resolution. The upsampling can be done differently

along the horizontal and vertical directions of the image, which results is expanding

or shrinking of the image along the corresponding direction. This is usually the case

for medical image processing since due to physical limitations, the resolutions of the

captured images are different along different imaging axes, especially in three dimensional

(3D) images. For example in modern imaging modalities like MRI or CT, to build a 3D

volume scan, multiple 2D slices are captured and then combined. However, the resolution

is not the same along the different axes. Usually the resolution is much higher within

the plane of 2D images while it is lower along the third dimension. When building

3D models form these scans, the asymmetry in the resolution leads to step-shaped iso-

surfaces and discontinuities. This calls for advanced computational techniques to increase

the resolution of the volume scans. Assuming MRI or CT images in which the resolution is

excellent within the image planes, only interpolation is required along the third dimension.

Therefore the problem is called slice interpolation since additional slices are needed to

be placed between the slices that are already captured. Even though general purpose

interpolation techniques (e.g. nearest neighbor, linear, cubic interpolation etc.) can be

employed, the results of such methods suffer from jagged and blurring effects near object

boundaries. The remedy can be sought in a class of techniques usually referred to as

object-based methods which use the extracted information from objects contained in

input images as guidance in the process of interpolation. Image matching/registration
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based interpolation techniques are examples of such class. Section 2.1 of the dissertation

introduces and investigates a novel registration-based slice interpolation method which

uses deformable image registration as means for more accurate slice interpolation.

Recently, Optical Coherence Tomography (OCT) has emerged as a powerful technique

for obtaining detailed 3D volumetric images of sub-surface tissue. One of the highly re-

garded fields which takes advantage of the technology is ophthalmology in which taking

µm-resolution volume scans using OCT is commonplace. Therefore, the need for sophis-

ticated image processing approaches for dealing with the high amount of data captured

has grown in the past two decades, including image matching/registration techniques.

Several different applications of using image registration approaches may include noise

reduction, multimodal retinal image registration, image mosaicing for extending the field-

of-view and involuntary eye motion reduction. Section 2.2 will focus on the problem of

noise reduction in OCT image data by taking advantage of Robust Principal Compo-

nent Analysis (RPCA). The procedure involves simultaneous image matching as well as

sparse/low-rank decomposition of the image data into signal/noise components which is

proven to provide high accuracy and noise-free results.

Dealing with deformable image registration problems can be computationally chal-

lenging since the aim is to find displacement vectors for all of the pixels contained in

the images. One solution can be in the use of computers with higher computational

power. This could include use of parallel programming by taking advantage of Graphics

Processing Units (GPUs) [118]. However, algorithmic optimizations will result in better

efficiency. Multi-resolution implementation of the optimization process can be considered

as a useful improvement widely found in the literature. In such implementations, the op-

timization starts from a very coarse grid for capturing larger deformations at first and

then moves to finer resolutions to capture smaller deformations. Another solution can

be sought in use of adaptive triangular meshes rather than the regular uniform grids em-

ployed in multi-resolution techniques. This will improve the representation of the images

since the objects and features are not distributed uniformly within the images. Of course

this requires additional implications for optimization of the energy functional needed for
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image registration. Section 2.3 discusses the idea of mesh-based registration more and

provides further details on the implementations of such technique.

As mentioned before, one major class of image matching methods takes the problem

of multiview analysis into consideration. In such techniques multiple images of the same

scene from different viewpoints are captured and used for the purpose of pixel/feature

matching, projective transformation estimation and finally 3D reconstruction of the scene.

However, in this dissertation, the general case of 3D reconstruction from 2D images is

not considered. Instead, the use of such techniques in 3D reconstruction of microscopic

samples is investigated. For this, the Scanning Electron Microscope (SEM) is used as

means of capturing high resolution images of micro-structures for the purpose of 3D re-

construction. SEM and its diverse applications have been a very active research area over

the recent decades, and scientific studies have covered the use of SEM in many domains

ranging from biomedical applications to materials sciences and nano technologies. The

SEM is an advanced microscopy device that produces high quality images of microscopic

specimen using a focused beam of electrons which can be then captured by two types

of detectors, the secondary electron (SE) and the back-scattered electron (BSE), to pro-

vide both compositional and/or geometrical information about the microscopic surface.

Despite having high resolution, the SEM micrographs still remain 2D. Therefore there

is a need for advanced computational methods for revealing the third dimension. As

will be discussed in greater detail in the rest of the dissertation, SEM 3D surface recon-

struction techniques can be divided into three major classes: a) single-view approaches,

b) multi-view approaches and c) hybrid approaches. In single-view approaches, using

varying lighting (electron beam) directions on a single perspective, a group of 2D SEM

micrographs are captured and used for 3D SEM surface modeling. In multi-view ap-

proaches a set of 2D SEM images from different perspectives assists the 3D SEM surface

reconstruction process. The hybrid mechanisms try to combine single-view and multi-

view algorithms to restore a 3D shape model from 2D SEM images. In single-view 3D

surface reconstruction, creating a full model of the microscopic sample is not possible

since the images are limited to only one view-point. Moreover, recreating the SEM mi-
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crographs of the sample under different illumination conditions is difficult. On the other

hand, multi-view approaches offer a more general and achievable framework for the task.

Therefore, here, the focus will be on the use of multi-view approaches and this requires

use of specifically designed matching techniques.

Depending on the matching technique used, the methods of multiview SEM 3D sur-

face reconstruction can be categorized into two major classes: a) sparse feature-based

approaches and b) dense pixel-based approaches. While methods from the first class are

employed to establish a set of robust matches between an image pair or a set of images

based on sparsely distributed distinct feature-points, dense multiview techniques try to

discover matches for all pixels in the images. These matches along with other computa-

tional methods will then be used to accurately estimate the projective geometry and 3D

surface models. Chapter 3 tries to explore the sparse feature-based class by employing

four well-known feature detector/descriptor widely used in the computer vision litera-

ture, namely SIFT, SURF, BRIEF and ORB. In each case, at first, distinct features are

detected in the set of multiview SEM images which are later described by considering

the features’ neighborhoods, in a manner specific to each method. These features are

then matched between multiple micrographs by employing several steps of optimization

and outlier removal in order to enable accurate estimation of fundamental matrix and

extrinsic calibration matrices. This is followed by 3D point cloud generation which can be

used for the final goal of 3D surface generation. Even though extensive comparisons are

representative of superiority of SIFT feature detector/descriptor for the purpose of 3D

reconstruction, however, the final outcome will be highly affected by the level of features

contained in the images. In other words, the results are not consistent between different

image sets. This is mainly due to the sparse distribution of feature points within the

image domain which results in a very smooth reconstruction of the surface with many

fine details missed in the process.

Chapter 4 tries to build on the result of Chapter 3, using the SIFT method, but with

a major twist as the aim is to use such technique not only for sparse feature points, but

instead for all the pixels in the images. In this chapter, a novel framework using sparse-
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dense correspondence is introduced and investigated for 3D reconstruction of stereo SEM

images. After imaging the microscopic samples, the process begins by sparse feature

detection/description using SIFT. Using the detected features and after one step of naive

matching using nearest neighbor search, a contrario RANSAC approach is employed

for eliminating the outliers and fundamental matrix approximation. This is later used

for rectifying the input pair. The rectification process will cause the displacements to

be more concentrated along the horizontal direction. This step enables a simplified 3D

reconstruction, as the depth will be proportional to the disparities of each pixel between

the multiview images. This is followed by finding the dense correspondence between

individual pixels of the rectified input images using the dense SIFT descriptors created for

all of the pixels. However, the implementation of such matching the same way as discussed

in the previous chapter is not computationally efficient due to high number of pixels.

Therefore, more efficient approaches must be employed. For this, the energy functional

defined for matching is represented as a factor graph and loopy belief propagation is

used for optimization. Given the fact that the input images are rectified, the horizontal

disparities can be used for depth approximation. Employing the proposed framework,

a more accurate depth estimation can be achieved when compared with sparse feature-

based approaches. The results are more consistent with sharper boundaries and less

smoothing effects.

In Chapter 5, the same framework is improved by considering a more accurate for-

mulation of the matching energy functional. Even though both formulations perform

similarly when having minimal variations in the microscopic surface, when dealing with

samples with higher complexities, the performance of the previous approach degrades. Of

course, it is still much better than sparse feature-based approaches as will be discussed

more later. However, improving the dense matching process as well as a more guided

final post-processing is shown to increase the accuracy of the framework greatly.

Given the above overview, the contributions of the dissertation can be summarized as

follows:

• The problem of slice interpolation in biomdecial image processing is introduced and
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a new deformable image registration-based approach is proposed.

• Noise reduction of retinal OCT images, as an application of image matching, is

investigated in detail and a novel approach for simultaneous alignment and sig-

nal/noise decomposition of the OCT data is introduced.

• To tackle the computational demands of deformable image registration approaches,

the concept of mesh-based registration is explored and the implications of such

formulation are investigated.

• Moving towards the main focus of the thesis, the problem of 3D reconstruction

of microscopic samples from sets of multiview SEM micrographs is investigated in

great detail. To address the issue, both sparse featured-based approaches and dense

pixel/descriptor-based approaches are considered.

• A new framework for sparse-dense correspondence for high quality 3D surface re-

construction of microscopic samples is introduced and compared with the state-of-

the-art in the field. Employing the proposed framework, higher accuracy levels are

achieved in comparison to the sparse feature-based approaches and more surface

details are revealed.

• The proposed framework is improved by considering more accurate dense match-

ing techniques which makes it more suitable for microscopic samples with higher

complexity levels. Moreover, a new approach for depth map refinement is intro-

duced and investigated. The proposed framework provides an end-to-end pipeline

for the researchers in the field, from image acquisition to pre/post-processing, to

quantitative analysis of surface attributes of the microscopic samples, and finally,

to 3D printing of high fidelity physical models, as the ultimate tangible means of

representation.
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Chapter 2

Image Registration in Biomedical Image Processing

with Some Applications

Medical Image Registration is an active area in the field of image processing with appli-

cations ranging from image mosaicing in retinal images [147] to slice interpolation [16]

etc. Image registration problems can be categorized into four major categories: multi-

view analysis, multitemporal analysis, multimodal analysis and scene to model registration

[219]. Generally speaking, given two images, reference R and template T, the image reg-

istration problem is to find a valid and optimal spatial or geometrical transformation

between the two input images. In the process, the pixel values of template image will not

change and only the locations will be altered. The range of applications of image reg-

istration is vast. Here, several applications of image registration is investigated for slice

interpolation and noise reduction of retinal Optical Coherence Tomography (OCT) data.

Since the problem of image registration needs optimization in its core to ensure a valid

and robust displacement field, the computational complexity can be an issue. Therefore

a new algorithm for mesh-based image registration in also introduced and validated here.

Section 2.1 introduces and investigates the problem of slice interpolation using deformable

image registration. Section 2.2 shows another example of image registration approaches

for noise reduction of retinal OCT images. Finally, Section 2.3 aims to tackle the prob-

lem of computational complexity of deformable registration by introducing mesh-based

registration.
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2.1 Curvature-Based Registration for Slice Interpo-

lation of Medical Images

Image interpolation is a well-known research topic in image processing [17] and there

have been many studies in this area, especially, in bio-medical applications. With modern

image modalities (CT, MRI, light/electron microscopy, etc.), a sequence of 2D images

can be provided and used in building 3D models [20, 49]. However, the resolutions of

the images are often not identical in all three directions. Usually the resolution in the

Z direction is significantly lower than the resolutions in the X and Y directions. For

example, in a generic CT, image-plane (X-Y) spatial resolution is of the order of 0.5-

2mm. On the other hand, the resolution normal to the image plane (Z) is of the order

of 1-15mm. This asymmetry in the resolution causes problems such as step-shaped iso-

surfaces and discontinuity in structures in 3D reconstructed models. Therefore utilizing

a slice interpolation algorithm to augment the 3D data into a symmetric one is of high

demand.

In general, slice interpolation methods can be divided into two groups: intensity-

based interpolation, and object-based interpolation. In the first category, the final result

of interpolation is directly computed from the intensity values of input images. Linear

and cubic spline interpolation methods are two examples of this group. The major ad-

vantages of these methods are their simplicity and low computational complexity, which

lead to their wide uses in practice. As the final result is basically a weighted average of

input images, these methods suffer from blurring effects on object boundaries, yielding

unrealistic and visually unappealing results.

On the other hand in object based methods, the extracted information from objects

contained in input images is used to guide the interpolation leading to more accurate

results. There are many methods proposed in the literature which take into account

additional information of objects in order to provide better results. One of the first

attempts for object-based interpolation has been made by Goshtasby et al [71]. Using

a gradient magnitude based approach, corresponding points between consecutive slices

10



www.manaraa.com

are found and then the linear interpolation is applied in order to find the in-between

slices. An important assumption of this work is that the difference between consecutive

slices is small, so they restrict their search for finding correspondence points to small

neighborhoods. It is obvious that this assumption is not true in many cases. To reduce

the blurriness of edges, some more recent approaches have been studied, including the

column fitting interpolation [83], shape-based method [72], morphology-based method

[105], and feature-guided shape interpolation method [104]. A comprehensive summary

of common methods (both intensity-based and object-based) for slice interpolation was

described in [73, 74].

An increasingly important group of approaches for object-based image interpolation

is based on image registration. Using the well-known free form deformation non-rigid

registration method by Rueckert et al. [165], Penny et al. [150] proposed a registration

based method for slice interpolation. Another registration based method was given by

Frakes et al. [63] by using a modified version of control grid interpolation (CGI). More

recently, Leng et al. [106] described a multi-resolution registration based method for slice

interpolation. In general, registration-based slice interpolation methods are guided by two

important assumptions. First, the consecutive slices contain similar anatomical features.

Second, the registration method is capable of finding the appropriate transformation

map to match these similar features. Violation of any of these assumptions results in

false correspondence maps, which leads to incorrect interpolation results.

Here, a novel method is developed for slice interpolation by taking into account the

well-known curvature-based registration [58, 134]. With a modified version of the registra-

tion method and an assumption of having linear movement between corresponding points

in given slices, a displacement field is computed and the in-between slice is interpolated

using a simple averaging of the registration results. The detail of the proposed method

is given in Section 2.1.1, followed by some experimental results along with quantitative

and qualitative evaluations of the method in Section 2.1.2.
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2.1.1 Method

Image registration is the process of matching a template image (T ) to a reference image

(R) by computing a spatial transformation that minimizes a cost function [58]. This

spatial transformation can range from a simple translation to a non-rigid free-form de-

formation. Registration can be accomplished based on matching a set of feature points

or can be directly applied to individual pixels.

Most image registration method accomplish the task using a variational formulation.

The joint functional that is minimized is as follows [58]:

E[u] = D[R, T ; u] + αS (2.1)

where E is the energy functional, D represents a distance/similarity measure and S

represents the rate of smoothness of u. The parameter α is used to balance the two

terms. In this functional, u should be found such that the joint functional is minimized.

This model is called single direction model because the reference image is fixed and only

the template image is moving. This causes asymmetry in the results in such a way that

if we fix the template image and move the reference image to match the template image

(backward registration) the result may not be exactly opposite to that of the forward

registration. For this reason, this model is modified to be used in the context of image

slice interpolation by changing the formulation to the following:

E[u] = D[R1(x− u), R2(x + u)] + αS (2.2)

where R1, R2 : Ω→ R are the two images provided as inputs and Ω = [0, 1]2 is the domain

of images, x is the grid of image values and u is the displacement values for each grid

point. Please note that in Equation (2.2), it is assumed that the slice to be interpolated,

denoted by R, is in the middle of the given images. If R is an arbitrary slice between R1

and R2, then we first need to compute the distances from R to R1 and R2, denoted by

d1 and d2 respectively. Then we calculate the ratio r = d1/(d1 + d2), and the following

equation should be considered for interpolating R:
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Figure 2.1: An illustration of linear displacements between corresponding points utilized
in this section. The main goal is to use the top and bottom slices to reconstruct the
in-between slice.

E[u] = D[R1(x− ru), R2(x + (1− r)u)] + αS (2.3)

Without loss of generality, we shall consider Equation (2.2) in the current section for

image slice interpolation. In this case r = 0.5 but since the coefficient will be the same

for both of the images and practically doesn’t affect the process of optimization, it is

considered to be 1 for simplicity of representation in the rest of the section. Figure 2.1

illustrates the idea behind considering linear displacements between corresponding points

that is utilized here for slice interpolation.

Several distance measures for D have been proposed in the literature, including the

Sum of Squared Differences (SSD), Mutual Information (MI), Normalized Mutual In-

formation (NMI), Cross Correlation (CC) and Normalized Gradient Fields (NGF) [135].

Here SSD is used as distance measure, and the above formulation can be re-written as:

D[R1(x− u), R2(x + u)] =
1

2
|R1(x− u)−R2(x + u)|2L2

=
1

2

∫
Ω

(R1(x− u(x))−R2(x + u(x)))2dx
(2.4)

For the smoothness term S, several common choices are available, such as elastic,
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fluid, demon, diffusion and curvature registration [58]. Here the curvature approach is

used, in which the smoothness term is as follows:

S[u] =
1

2

2∑
l=1

∫
Ω

(4ul)2 (2.5)

where 4 is the curvature operator and the summation is computed over the two dimen-

sions of images and the integral is computed inside the domain of images. As stated in

[12], using curvature as the smoothness term, the need for an additional linear affine pre-

registration step can be eliminated. Also it should be noted that the curvature operator

Scurv is defined by Scurv = Sdiff ∗ Sdiff , where ∗ is the convolution operator and Sdiff

is the discrete Laplace operator for 2D images.

In order to minimize the above joint functional in (2.2), the Gateaux derivative of

E[u] is computed. Setting it equal to zero to find the minimum point, an Euler- Lagrange

Partial Differential Equation (PDE) can be obtained as:

f(x,u(x)) + αAcurv[u](x) = 0 (2.6)

where f(x,u(x)) = (R2(x + u)−R1(x−u)).(5R1(x−u) +5R2(x + u)) and Acurv[u] =

42u.

To solve this PDE, a time-stepping iteration method is considered as follows:

∂tu
k+1(x, t) = f(x,uk(x, t)) + αAcurv[uk+1](x, t), k ≥ 0 (2.7)

with u0 = 0. Using a finite difference approximation of the derivative with time step

τ and also collecting the grid points with respect to a lexicographical ordering, one can

derive a discretized version of (2.7) as follows:

(In + ατAcurv)~U
(k+1)
l = ~U

(k)
l + τ ~F

(k)
l , l = 1, 2 (2.8)

where l is the parameter representing the dimension index. Following the same approach

as in [58, 134], the optimization process can be done by exploiting Discrete Cosine Trans-
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form (DCT). Assuming slices have the size of m × n, the set of coefficients dj1,j2 are

computed as follows:

dj1,j2 = −4 + 2 cos
(j1 − 1)π

m
+ 2 cos

(j2 − 1)π

n
(2.9)

where j1 = 1, 2, ...,m, j2 = 1, 2, ..., n. Defining G = DCT [~U
(k)
l + τ ~F

(k)
l ] for l = 1, 2, we

can have:

~U
(k+1)
l = IDCT [V] (2.10)

where Vj1,j2 = Gj1,j2 [1 + ταd2
j1,j2

]−1 and IDCT is the inverse discrete cosine transform.

After finishing the optimization process, a simple averaging of the two transformed in-

put images provides us with the missing in-between slice. Algorithm 1 summarizes the

algorithm for curvature registration based slice interpolation method.

Algorithm 1 Curvature registration based slice interpolation algorithm

Initialization: τ, α,X,U0 = 0, dj1,j2 ;

Optimization:

for all k = 0, 1, ... do

% Computing forces

F
(k)
l = (R2(X + U(k))−R1(X−U(k))).(5R1(X−U(k)) +5R2(X + U(k)))

% Solving the linear system

for all l = 1, 2 do

G = DCT [~U
(k)
l + τ ~F

(k)
l ]

for all j1 = 1, ...,m, j2 = 1, ..., n do

Vj1,j2 = Gj1,j2 [1 + ταd2
j1,j2

]−1

end for

~U
(k+1)
l = IDCT [V]

end for

end for

Interpolation: R = (R1(X−Ufinal) +R2(X + Ufinal))/2
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Figure 2.2: Top row: results of slice interpolation with proposed method. Bottom row:
results of slice interpolation with linear interpolation method.

2.1.2 Results and Discussion

To validate the proposed method for slice interpolation in medical images, several tests

have been conducted. The results of the proposed method are compared with two other

methods, in both subjective and objective aspects. As a metric, Mean Squared Difference

(MSD) is used for comparison. Assuming Iorg and Irec as original image and reconstructed

image respectively, with the size of m× n , MSD is defined as follows:

MSD =
1

m× n

m∑
i=1

n∑
j=1

(Iorg(i, j)− Irec(i, j))2 (2.11)

In the first test, a pair of synthetic images of two circles is used. In the first and

last column of Figure 2.2 the input images to the algorithms can be seen. Not only the

location but also the size of the circle has changed. The goal is to place 3 in-between

slices to show the gradual changes of the shape and location of the circle. The results of

the proposed method and linear interpolation method are presented in the second, third

and fourth columns of Figure 2.2. As expected, the proposed registration based method

is able to correctly track the movement of the circle between two slices. Also from the

images it can be seen that the transformation can be modeled as an affine transformation

which using curvature registration based method it is perfectly estimated.

For the second test, three consecutive slices as in Figure 2.3 (a) are used. Taking the

first and third slices as inputs, the in-between slice is reconstructed by using both linear

interpolation and the proposed method. Figure 2.3 (b) shows the interpolation results
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(a)

(b)

Figure 2.3: (a) Three consecutive slices. The first and third images are used for interpo-
lation with parameters set as: τ = 0.03, α = 100 (b) Top row: results of interpolation for
linear and proposed methods respectively. Bottom row: difference images for the results.
(c) Close-up of the results of linear and proposed method. (d) Optimized displacement
fields in horizontal and vertical directions.

using the two methods (top row) as well as the computed difference images (bottom row)

with respect to the original image. The computed MSDs are 84.20 and 52.52 for linear

and proposed methods respectively. Figure 2.3 (c) gives a close-up of the results. Figure

2.3 (d) gives the optimized displacement fields for both horizontal and vertical directions.

Bright and dark shades represent positive and negative displacement values respectively,

while gray shades are for displacements near zero.

As can be seen, the difference between slices is due to the movement of the heart

near the center of these images. Using linear interpolation, the movement of heart is

not captured, resulting in blurred edges in the interpolated slice. By comparison, the

registration-based method captures the movement well and the final result is highly sim-
17
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Figure 2.4: Results of placing 3 slices between two input slices (first and third slices from
Fig.2 (a)) using proposed method (Top row) and linear interpolation method (Bottom
row)

ilar to the original one (middle image in Figure 2.3 (a)). As a result, the MSD error is

significantly reduced and the interpolation result is much sharper. Figure 2.4 represents

the results of placing 3 in-between slices for the two input images for both proposed

method and linear interpolation method. The movement of the heart is perfectly tracked

using the proposed registration based method while linear interpolation method cannot

capture this movement.

To further demonstrate the strength of the proposed method, the same procedure is

applied to another set containing three brain images as shown in Figure 2.5 (a). Using

the first and third slice, the interpolation results are produced. Besides the linear interpo-

lation, we also compare the proposed method with a non-modified curvature registration

based technique, here called non-modified method. For this method, after registering the

reference and moving the template image using curvature registration [58] and finding

the optimized displacement fields, linear interpolation along the computed displacement

vectors of corresponding points in the reference and moving images is implemented to

reconstruct the in-between slice. Figure 2.5 (b) shows the results of interpolation as well

as the computed difference images. The MSDs are 71.65, 45.36 and 42.72 for linear,

non-modified and proposed methods respectively. As can be seen, the result of linear

interpolation has uncertain and highly blurred edges. Result of non-modified method
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(a)

(b)

(c)

Figure 2.5: (a) Three consecutive slices. The first and third images are used for interpo-
lation with parameters set as: τ = 0.05, α = 100 (b) Top row: results of interpolation for
linear, non-modified and proposed methods respectively. Bottom row: difference images
for the results. (c) Close-up of the results of linear, non-modified and proposed method
respectively.

is significantly better than linear interpolation, in terms of MSD but due to nonlinear

nature of image registration and optimization process, we still have blurred edges. In

comparison, the proposed method gives much sharper edges. This becomes more obvi-

ous in the difference images where blurred edges cause widened regions of dissimilarity.

Also, it should be mentioned that, in the non-modified method, only one of the images

is moving. As a result, more iterations of optimization are needed for convergence, and

thus more computational time is required. Figure 2.5 (c) gives a close-up of the results

for better comparison.

Based on Figure 2.5, the effect of moving both images simultaneously in the proposed

method in comparison to moving only one of the images in the non-modified method is
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obvious. Moving both images not only reduces the computational time needed for the

convergence, but also can prevent the algorithm from getting trapped in local minima

which is caused because of large displacements between corresponding points (See Figure

2.5 (c) for the comparison of the methods). Also the integration of linear displacement be-

tween corresponding points in the process of optimization reduces the need for additional

linear interpolation after registration to a simple averaging between the two deformed

images.

A similar test is conducted for the entire brain image database, containing 79 images

with the size of 217 × 181 pixels. For interpolation of each evenly numbered slice, a

pair of two consecutive slices with odd numbers is used and the reconstructed images are

compared with the corresponding slices from the original database. The average MSDs

are presented in Table 2.1. The numbers in parentheses for the non-modified method

represents the improvement percentage with respect to linear interpolation method. The

numbers in parentheses for the proposed method represent the improvement percentage

with respect to linear and non-modified method respectively.

In terms of computational time, excluding the linear interpolation method which

obviously takes less time than the other two, the proposed algorithm outperforms the non-

modified method. The algorithm is implemented using MATLAB without any specific

code optimization procedure. The average time for the proposed method to produce the

in-between image is about 40 seconds while for the non-modified method it is about 50

seconds. This is due to the fact that only one of the images is moving which makes it more

time consuming for convergence. The optimization process stops when the improvement

in SSD is less than 0.01%. Also to produce the results presented here, τ and α are fixed

for the whole database (τ = 0.05, α = 100). Of course since τ is the time step of the

iterative scheme, the process of finding the best value can be further optimized using a

line search method to ensure faster and more robust convergence in fewer iterations.

For the smoothness term, the curvature operator penalizes oscillation in the displace-

ment field [58]. Also it reduces the need for additional affine transformation in the

beginning of the process of image registration. The regularization parameter α deter-
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Table 2.1: Comparison of the average MSDs for brain image database (as well as the
improvement rates) for the linear, non-modified and the proposed slice interpolation
approaches.

Method Linear Non-modified Proposed
MSD 118.7652 56.0765 (52.78%) 54.6450 (53.99%, 2.56%)

mines the balance between the two terms in the energy functional. Choosing small values

for the parameter causes non-smooth displacement in the final results while choosing big

values makes the deformation more rigid which is not useful for slice interpolation due

to deformation of objects in the consecutive slices. To have a deformable registration

between slices, there should be a trade-off between smoothness of the transformation and

the rigidity of the movements. Here the value for α is set intuitively and the same for

all the tests provided here which may not be appropriate, especially in case of medical

images since there might be different objects (organs) with different physical properties

within images. For a general discussion on this subject the reader is referred to [95].

It should be noted that the improvement is not significant compared to the results of

the non-modified method. But as it is obvious from the results, by integrating the idea

of linear movement between corresponding points in the process of optimization better

results can be achieved. However, even in the non-modified method, a linear interpolation

is needed between the corresponding points in order to reconstruct the in-between slice.

Also it should be mentioned that one of the main assumptions of using registration based

methods for slice interpolation is that the objects within the input slices can deform or

move, but they cannot disappear. In other words, if from one slice to another the object

disappears the result of registration based interpolation is unpredictable. This is not an

assumption that can be completely preserved when the input data is a stack of medical

images. Overall, the proposed registration based method, can manage to improve the

results more than 2.5% percent when compared with the non-modified version (See Table

2.1). Of course there is room for improvement both in computational time and quality

of the final image.
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2.1.3 Conclusion

A new registration-based slice interpolation method is proposed. A modified version of

the curvature registration method has been used with the assumption of linear displace-

ments between corresponding points in two input images. The obtained displacement

fields for the two input images are utilized to produce the missing in-between slice. In

comparison to both linear interpolation and the non-modified registration based method,

the proposed method produces lower MSD values and sharper/certain edges. The current

implementation was performed in MATLAB without any code optimization procedure.

Use of and C/C++ implementation can reduce the computational time drastically.

2.2 Sparse and Low Rank Decomposition Based Batch

Image Alignment for Speckle Reduction of Reti-

nal OCT Images

Optical Coherence Tomography (OCT) is a powerful non-invasive imaging system for ac-

quiring 3D volumetric images of tissues. OCT as an optical imaging modality, aims to pro-

vide cross-sectional images of tissues by measuring the magnitude of back-reflected/backscattered

light as well as the echo time delay. The concept resembles that of ultrasound, however,

due to high speed of light, direct measurement of the optical echo is impossible. This

calls for indirect procedures for measuring the time-of-flight and intensity of the back-

scattered light which is done by taking advantage of interferometric techniques using

ultra-short light pulses or partially coherent light [7, 8, 19, 87, 191]. Throughout the past

two decades, new developments in the OCT imaging systems have improved the acqui-

sition time and also the quality of the acquired images. Nowadays taking µm-resolution

volume images of the tissues is very common especially in ophthalmology.

Generally speaking, there are three main aspects of retinal OCT image processing:

noise reduction, feature segmentation, and image registration. The process of OCT image

acquisition results in the formation of irregular granular patterns called speckle. Speckle
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is a fundamental property of the signals and images acquired by narrow-band detection

systems like Synthetic-Aperture Radar (SAR), ultrasound and OCT. Not only the optical

properties of the system, but also the motion of the subject to be imaged, size and

temporal coherence of the light source, multiple scattering, phase deviation of the beam

and aperture of the detector can affect the speckle [173]. Two types of speckle are present

in OCT images: signal-carrying speckle which originates from the sample volume in the

focal zone; and signal-degrading speckle, also known as speckle noise, which is created

by multiply-scattered out-of-focus light. Figure 2.6 (a) shows a sample retinal OCT

image, highly degraded by speckle noise. Delineating micro-structures in the image is of

particular importance in OCT image processing for ophthalmology [46, 93] and therefore

image segmentation plays a significant role in OCT data analysis, especially retinal layer

segmentation. Active contour based techniques [57, 133, 212] and graph-based techniques

[41, 42, 68, 92, 179] are very good examples of such approaches. There are several different

applications for using image registration approaches in OCT image analysis, such as noise

reduction [4, 12, 13, 91], multi-modal retinal image registration [69, 109], image mosaicing

[82, 110, 122] and motion correction [101, 100, 154, 160, 205].

Speckle is considered to be multiplicative noise, in contrast to the additive Gaussian

noise. Due to limited dynamic range of displays, OCT signals are usually compressed

by a logarithmic operator applied to the intensity information which converts the mul-

tiplicative speckle noise to additive noise [166]. OCT noise reduction techniques can be

divided into two major classes: 1) methods of noise reduction during the acquisition

time and 2) post-processing techniques. In the first class, which is usually referred to as

compounding techniques, multiple uncorrelated recordings are averaged. These include

spatial compounding [9], angular compounding [172], polarization compounding [97] and

frequency compounding [155]. There are two major classes of post-processing techniques

for speckle noise reduction: anisotropic diffusion-based techniques [158, 166] and multi-

scale/multi-resolution geometric representation techniques [1, 75, 76, 89, 90, 156, 206].

Use of compressed sensing and sparse representation have also been explored in the past

few years [54, 55]. For a more complete review on the different image analysis techniques
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(a) (b)

Figure 2.6: (a) Sample retinal OCT image degraded by speckle noise, (b) Final result of
the proposed method using 50 misaligned noisy retinal OCT images

in OCT image processing, including noise reduction, the reader is referred to [19] and

references therein.

Post-processing averaging/median filtering is also an interesting method for speckle

reduction. Usually in such techniques, multiple B-scans of the same location are acquired

and then the average/median is taken. It is assumed that the speckle between different

recordings is un-correlated. The misalignment between the different B-scans is usually

compensated with a parametric image registration technique, such as translation based

registration, rigid registration or affine registration. Theoretically, having N B-scans, the

Signal-to-Noise-Ratio (SNR) can be improved by a factor of
√
N .

In [91] a dynamic programming based method is used for compensation of the trans-

lational movements between several B-scans and reducing the speckle noise. But as it is

obvious, translation is not the only possible movement that can happen between different

B-scans. A hierarchical model-based motion estimation scheme based on an affine-motion

model is used in [4] for registering multiple B-scans to be used for speckle reduction.

Here, another technique for registration-based speckle reduction is proposed. This

technique utilizes sparse and low rank decomposition to separate between image features

and noise components in each B-scan, while aligning them iteratively. Using this tech-

nique, sub-pixel accuracy can be achieved for the alignment process which can further

improve the SNR and Contrast-to-Noise-Ratio (CNR) in the final denoised result. Sec-

tion 2.2.1 contains detailed explanation of the sparse and low rank decomposition based
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batch image alignment technique. In Section 2.2.2 the results of this method is presented

and compared with translation and rigid registration methods in terms of SNR and CNR.

2.2.1 Method

Robust Principal Component Analysis (RPCA)

Given a large data matrix D ∈ Rm×n, the RPCA process divides D into two components:

D = L + S, with L being the low rank component and S being the sparse component

[38]. In an l2 sense, this is the classic Principal Component Analysis (PCA). Even though

this technique is widely used in the literature, the inherent sensitivity to outliers makes

it less useful in modern applications. This can be remedied by minimizing ||L||∗+λ||S||1

s.t L+ S = D which is proven to have an exact recovery under broad conditions [38].

This concept has been widely used in different branches of computer vision and image

processing such as video surveillance, shadow or specularity removal in face recognition,

video repairing etc. In [121] this technique is used for single OCT image noise reduction.

For post-processing averaging/median filtering, multiple B-scans of the same location

are acquired and used for noise reduction. As mentioned before, here the main issue is

regarding the misalignment between the B-scans, as well as the differences in the displayed

patterns due to eye movement. This requires image alignment prior to averaging/median

filtering. One technique is to pre-register the noisy images and use them as inputs for the

next stage. Considering the high amount of noise degrading the images, this can cause

erroneous alignment. A better way is to combine the image registration task with low

rank/sparse decomposition of the data which reduces the effect of noise in the process

of registration. Another advantage of this method is its ability to detect the underlying

low-rank pattern which results in elimination of retinal features that are not present in

all of the slices and only appear due to eye movement. Here, we follow the work of [149]

for simultaneous alignment and decomposition of the retinal OCT images.
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Robust Alignment by Sparse and Low-Rank Decomposition (RASL)

Assuming a set of n B-scans, the data matrix D can be created by stacking the vectorized

images as columns of the matrix. Having completely aligned images, it is expected that D

is low-rank, with the possibility of having sparse additional noise: D = L+S. In the case

of OCT images considered here, additional optimization is needed in order to compensate

the misalignment. This is done by assuming a set of parametric transformations, τ ,

applied to the images. In this formulation we have:

minL,S,τrank(L) + λ||S||0 s.t. D ◦ τ = L+ S (2.12)

This is a non-convex and NP-hard problem to solve due to the need for minimizing

the rank and the l0 norm. Convex relaxation of the problem as elaborated in [38] results

in:

minL,S,τ ||L||∗ + λ||S||1 s.t. D ◦ τ = L+ S (2.13)

where ||.||∗ is the nuclear norm (sum of singular values) and ||.||1 is the l1 norm.

Another difficulty arises from the non-linearity of the constraint D ◦ τ = L+S . This

can be solved assuming minimal changes in τ in each iteration and linearizing around the

current estimate of τ . Therefore:

D ◦ (τ + ∆τ) ≈ D ◦ τ +
n∑
i=1

Ji∆τεiε
T
i (2.14)

where Ji is the Jacobian of the ith image with respect to the transformation parameters

and εi is the standard basis for Rn. This linearization only holds for small misalignment

between the images in the batch. Starting from an initial set of transformations, here the

identity transformation, and setting rigid transformation as the desired transformation, at

each iteration this linearized convex optimization problem is solved using the normalized

images to avoid the trivial solutions until convergence. Algorithm 3 summarizes the

process.

The main computational cost of the Algorithm 3 is in the third step: solving the
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Algorithm 2 Sparse and Low-rank Based Alignment

Inputs: input images, initial transformation set, λ > 0
WHILE not converged DO

Step 1: compute the Jacobian w.r.t transformations: Ji
Step 2: warp and normalize the images: D ◦ τ
Step 3 (inner loop): solve the linearizied convex optimization problem:

(L∗, S∗,∆τ ∗)← arg minL,S,∆τ ||L||∗ + λ||S||1

s.t. D ◦ τ +
n∑
i=1

Ji∆τεiε
T
i = L+ S

Step 4: update transformation: τ ← τ + ∆τ
END WHILE
OUTPUT: solution L∗, S∗ and τ ∗ to problem (2).

linearized convex optimization problem. Since this problem has millions of variables,

having a scalable solution is of high importance. Augmented Lagrange Multiplier (ALM)

[113] has been proven to have reliable results for such optimization. By defining:

h(L, S,∆τ) = D ◦ τ +
n∑
i=1

Ji∆τεiε
T
i − L− S, (2.15)

the augmented Lagrangian function to be optimized is defined as:

Lµ(L, S,∆τ, Y ) = ||L||∗ + λ||E||1+ < Y, h(L, S,∆τ) > +
µ

2
||h(L, S,∆τ)||2F (2.16)

where Y is the Lagrange multiplier matrix, µ is a positive scalar and ||.||F is the Frobenius

norm. Choosing an appropriate Y and large enough µ, the augmented Lagrangian func-

tion has the same minimizer as the original constrained optimization problem. For further

explanations regarding the optimization process the reader is referred to [149, 113].

The final result of the algorithm is the well-aligned stack of images, decomposed

into low-rank data set containing image information and sparse component consisting of

speckle noise. As investigated in [9], spatial compounding works best with use of median

filtering rather than averaging. Here, the final image is created by pixel-wise median

filtering of the final low-rank components of the data.
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2.2.2 Results and Discussion

For assessing the performance of the proposed method, several metrics are considered.

Considering 6 regions of interest (ROI) in the final results, one only containing background

noise and the rest containing image features, the metrics can be defined as follows:

SNRm = 20× log(
µm
σb

)

CNRm =
µm − µb√
σ2
m + σ2

b

(2.17)

where µb and σb are the mean and standard deviation of the background noise and µm

and σm are the mean and standard deviation of the mth ROI containing image features.

The average of these metrics are considered here for comparison.

Different numbers of images of the human retina in the central foveal region are

considered for assessing the performance of the proposed algorithm. Figure 3.1(a) shows

a sample image of the dataset that is used here. As for other registration based methods,

translation and rigid registration techniques available in ImageJ [174] software package

are considered for comparison, since they are widely used in the literature and give

reasonable performance.

Figure 3.2 represents the improvement in the average SNR of the final image for

different techniques, while Figure 3.3 shows the improvement achieved in average CNR

for different number of input images. Figure 3.1 (b) shows the final result of the proposed

algorithm for speckle noise reduction using 50 misaligned noisy OCT input images.

One critical step in post-processing averaging/median filtering of the OCT images for

noise reduction is the pre-selection of the set of images to be registered and averaged.

This is due to the presence of µm-level features in the high resolution OCT images.

During the imaging session, movement of the eye in 3 dimensions causes these features to

appear/disappear between consecutive B-scans. In other words, fine features from very

close locations come to focus, while some other features will go out of focus. This makes

the pre-selection a necessary step at the beginning of the process. Using RPCA, this

can be eliminated. As mentioned before, RPCA tries to divide the input set of data,
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Figure 2.7: SNR improvement for different number of input images (5-50)

here the stack of vectorized B-scans, into two components: one low-rank and one sparse.

In this scenario, the algorithm looks for similar patterns in the data that are shared

between different B-scans to extract the low-rank component while eliminating different

patterns as being noise. In other words, without the need for pre-selection, the RPCA

chooses the most common features as the ground truth and neglects the features that only

appear in few B-scans and considers them as noise. Even though this can be achieved

using simple averaging too given enough number of images, still the main drawback is

that naive averaging is indecisive about the common/uncommon features to be averaged

causing it to have more blurred features. This is because the uncommon features are

diffused to the rest of the data. The same analogy can be applied for elimination of blood

vessel shadows between different B-scans. Figure 3.4 displays close-ups of the original

and filtered version of the input images using different techniques for comparison.

2.2.3 Conclusion

A new application of the sparse and low rank decomposition based batch image alignment

in noise reduction of OCT images is introduced. Having a stack of misaligned, mostly

due to eye movements, and noisy retinal OCT images, the process of alignment is done by

decomposition of the vectorized image data into low rank and sparse components at each

iteration to ensure better final alignment and noise/signal separation. Using SNR and
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Figure 2.8: CNR improvement for different number of input images (5-50)

(a) (b) (c) (d)

Figure 2.9: A portion of one of the input images (a) and the results of ImageJ translation
(b), ImageJ rigid (c) and RASL rigid registration based methods (d).

CNR as metrics, the performance of the method is compared with some other registration

based techniques for speckle noise reduction. Our approach gives better performance

when bench marked against other techniques with respect to measures such as SNR and

CNR while incurring larger computational cost. Using GPU implementations, higher

speeds can be achieved, which is not the focus of our work. Also, from an algorithmic

point of view, newer techniques have been proposed in the literature for sparse and low

rank decomposition, which can be considered for future research.
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2.3 Fast Mesh-Based Medical Image Registration

Other than the obvious way of assessing an image registration method which is the

similarity of the final deformed template image to the reference image, the computational

complexity of the method is also a major factor. This becomes more important in case

of non-rigid image registration methods in which the deformation is local rather than

global. The main reason for this is due to the size of the images, which results in a very

big number of degrees of freedom in the optimization process. This is more obvious in

case of non-parametric image registration techniques. One obvious solution to remedy

this problem is using parallel computing using specialized hardware such as Graphics

Processing Units (GPUs) [61].

From an algorithmic point of view, using multi-resolution techniques can also be

considered [43]. These techniques start from a very coarse grid to capture the larger

deformations in the images to be registered and then move to much finer grids to capture

the smaller deformations. Usually, this is done on a uniform square grid which means

that the sampling will take place uniformly. In other words, even though the objects and

image features are scattered randomly in the images to be registered, multi-resolution

based methods do not take this fact into consideration. Adaptive grid generation using

Octrees has been used to address this issue [77]. However, square grids cannot accurately

match feature boundaries that are typically curvilinear. Use of triangular meshes enables

better representation of curvilinear image feature boundaries [117]. This representation

also allows for easy reconstruction of final results as well as the computation of the final

optimized displacement. Furthermore, content-based adaptive meshing greatly reduces

the computational complexity of the registration process. Of course, this will have its own

implications for optimizing the energy functional of the method which will be discussed

more in later sections.

There have been a few previous works in this area, usually considering the problem of

image registration as a Finite Element Method (FEM) problem [157, 15]. But they usually

need additional information about the physical properties of the underlying structure.

Also, the process is not completely mesh based. In [157] each update of the displacement
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field in each iteration is followed by a re-sampling to the regular image grid, computational

procedures to find the update terms for the next update and then re-sampling again to

the triangular grid.

Here, a new mesh based image registration technique will be introduced which takes

advantage of mesh-based operators without the need to switch between regular image grid

and triangular mesh grid. Use of such techniques has previously been investigated for

image restoration and segmentation [117, 209, 210, 214, 215]. Taking the reference and

template images as the inputs and some needed parameters, the proposed method can

achieve excellent accuracy and higher speed compared to regular pixel-based registration

methods. Even though a uniform initial mesh can be considered, a content adaptive

initial mesh is created for the template image which perfectly matches the image’s edges

and features. The energy functional is minimized and the final displacement field is

reconstructed. Finally, MSD will be used to assess the performance of our registration

technique. Section 2.3.1 contains comprehensive details about the proposed methods.

Results and discussions are provided in Section 2.3.2.

2.3.1 Method

Taking the general notation as most of the papers in this field, assuming template (T )

and reference (R) images as inputs, the goal of image registration is to find a valid and

optimal geometrical transformation to be applied to T to become more similar to R,

according to some similarity measure. Therefore, the process can be formulated as an

optimization problem which tries to optimize some energy functional that can be defined

as in equation (2.1). Due to the random distribution of image features, we propose to use

a sparser representation of both input images using a content adaptive mesh generator

such as the one described in [208].

Formulation of The Mesh-Based Image Registration Method

Assume T and R as input images with the same size, and a set of triangles defined on

the template image represented by (V, F ), where V is a nV × 2 matrix containing the
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coordinates of nV mesh nodes or vertices and F is a nF×3 matrix, each row containing the

indices of nodes creating each one of the nF triangles/faces. Note that T (V ) represents

a vector with constant values which only the locations of its values change in the process

of optimization. R represents a continuous domain on X ∈ Ω, hence R(V ) = R(X)|X=V .

Also, it should be mentioned that the set of triangles covers the template image’s domain

Ω. In the optimization process to find the displacement field, the smoothness term

(regularizer) will be applied after each iteration using a diffusion process described later

in more detail. The energy functional is therefore define as follows:

E[u(V )] = D[R(X)|X=V+u, T (V ) ◦ u(V )] (2.18)

where E and D represent the energy functional and the distance measure respectively.

Also, the ◦ operator is defined as:

T (V ) ◦ u(V ) = T (V + u(V )) (2.19)

For simplicity of representation, and since it is obvious that the method is applied

to mesh nodes, from now on, the notation of a function f of variable V which has a

general form of f(V ) will be reduced to just f . As mentioned before, several distance

or similarity measures can be found in the literature, each having its pros and cons and

being suitable for different problems encountered in image registration. Here, the Sum

of Squared Differences (SSD) is used which can be defined as follows:

D(R(X)|X=V+u, T ◦ u) =
1

2
||R(X)|X=V+u − T ◦ u||2

=
1

2

∑
i=1:nV

(T (Vi) ◦ u(Vi)−R(Xi)|Xi=Vi+ui
)2

(2.20)

where the last summation is computed over all of the mesh nodes. Minimizing the energy

functional and updation of the displacement field can be done considering a gradient

descent approach:

uk+1
0 = uk1 − τ 5uk

1
E[uk1] (2.21)
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where τ is the step size (here 0.005) and 5uk
1

is the gradient operator with respect to

variable uk1. The gradient of the energy functional is computed by taking the Gateaux

derivative of the distance measure which results in:

5uk
1
E[uk1] = 5uk

1
D

= (T (V + uk1)−R(X)|X=V+u).5uk
1
T (V + uk1)

(2.22)

where 5uk
1
T (V + uk1) needs to be computed on mesh nodes.

The reason behind using two different subscripts (0 an 1) in (2.15) is because of the fact

that this displacement function needs to be smoothed to ensure regularized displacements

in the image domain. For smoothing the displacements on the mesh, a diffusion process

needs to be solved on the mesh nodes. This diffusion process can be modeled as follows:

∂uk+1
0

∂t
= λ4 uk+1

0 (2.23)

where 4 represents the Laplacian operator on mesh nodes. This diffusion process is

solved using a forward difference time-stepping approach. Without loss of generality and

to reduce the confusion with the gradient descent method’s step size, here the time step

will be considered as 1. Hence from (2.17):

uk+1
1 = uk+1

0 + λ4 uk+1
0 (2.24)

where 0 < λ < 1 is the smoothing parameter defined by the user (here 0.8). Further

simplification will be done in the following sections.

Discretization of Gradient on a Triangular Mesh

Consider node Vi and its 1-ring (N1) neighbor nodes. Approximation of the gradient of

a function f on the location of node Vi can be achieved using linear interpolation of the

function f over the surface created by this region. Assuming triangle Fj created by nodes

[ViVjVk] as one of the triangles surrounding Vi, the approximation of the gradient on Fj
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will be:

5fTj =
1

4A2
j

(
fi[(
−→
Vij,
−→
Vjk)(Vk − Vi) + (

−→
Vik,
−→
Vkj)(Vj − Vi)]

+fj[(
−→
Vji,
−→
Vik)(Vk − Vj) + (

−→
Vjk,
−→
Vki)(Vi − Vj)]

+fk[(
−→
Vkj,
−→
Vji)(Vi − Vk) + (

−→
Vki,
−→
Vij)(Vj − Vk)]

) (2.25)

where fi is the function value on node Vi, Aj is the area of the triangle Fj,
−→
Vij is the

vector connecting nodes i and j and (−→a ,
−→
b ) gives the dot product of vectors −→a and

−→
b . Having the approximation of the gradient on surrounding triangles, the approximate

gradient for node Vi can be computed as follows:

5f(Vi) =
1

A(Vi)

∑
j∈N1(Vi)

Aj 5 fTj (2.26)

where A(Vi) =
∑

j∈N1(Vi)
Aj. For a complete analysis on the approximation error the

reader is referred to [204]. The areas of triangles should be computed at the beginning

of each iteration.

Diffusion-Based Smoothing of Displacement

Taking the same approach as [47], the Laplacian operator on a mesh can be approximated

by the so-called umbrella operator on each node as follows:

4u(Vi) =
1

mi

∑
j∈N1(Vi)

u(Vj)− u(Vi) (2.27)

where mi is the valence (number of 1-ring neighbors) of node Vi. This operator can be

defined in a matrix form:

4u = (ALap − I)u (2.28)

where I is the identity matrix and ALap is a sparse nV × nV matrix which its non-zero

elements are defined as:

ALapij =
1

mi

, for all j ∈ N1(V i) (2.29)
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Considering (2.18) and (2.23) together with a few manipulations, the diffusion process

can be simplified as a weighted average of the displacements of the 1-ring neighborhood

of each node:

uk+1
1 =

(
(1− λ)I + λALap

)
uk+1

0 (2.30)

The above equation can be applied iteratively for further smoothness of the displace-

ment field on the mesh nodes. Here, only one iteration of smoothing is applied. The

overall algorithm for mesh-based registration is illustrated in Algorithm 2.

Algorithm 3 Fast Mesh-Based Image Registration
Inputs: R, T , (V, F ) defined on the template image, λ, τ ;
Pre-Computation: N1 and neighbor triangles for each mesh node, ALap;

For k = 1→ convergence
{

• Update:

– E[u] = D(R(X)|X=V+u, T ◦ u)

– 5uk
1
E[uk1]

– uk+1
0 = uk1 − τ 5uk

1
E[uk1]

• Smoothing :

– uk+1
1 =

(
(1− λ)I + λALap

)
uk+1

0

}

2.3.2 Results And Discussion

Content Adaptive Mesh Generation

For generating the content adaptive mesh needed for our algorithm, the method proposed

by Ming et al. [208] is used. Based on the discussion given in this paper, the main

difference between various mesh generating methods rises from the differences in node

placement procedures. In some, the nodes are placed based on feature points in images,

while in others, this process is done iteratively, either starting from a coarse mesh and

adding new nodes or starting from a dense mesh and removing redundant nodes. The

method consists of several steps as follows:
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(a) (b)

Figure 2.10: Example of content adaptive mesh generation

1. Node generation:

• Canny sample points;

• Halftoning sample points;

• Uniform sample points.

2. Mesh generation via Delaunay triangulation;

3. Image-based mesh smoothing:

• Image-based Centroid Voronoi Tessellations (CVT) mesh smoothing;

• Image-based Optimal Delaunay Triangulations (ODT) mesh smoothing;

• Edge flipping.

The result of this method is a high quality content adapted triangular mesh which

is matched accurately with image features and edges. Figure 2.6 displays an example

of content adapted mesh generated for a brain cross-section. Image registration results

using the proposed method is given in the following sections.

Example 1- Brain CT Images

For the first example, a pair of brain images are considered which are displayed in Figure

2.7. Comparing the reference and template images reveals a rigid transformation as well
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(a) (b) (c)

Figure 2.11: (a) Template image, (b) Reference image, (c) Difference image

as a non-rigid transformation in the center between the two. Using a content adapted

mesh with 5406 nodes and 10744 triangles, the registration is done. The average time

for each iteration is about 156 ms for these images. The computed displacement fields

as well as the registered image and the difference image after registration can be seen in

Figure 2.8. The MSDs before and after registration are 271.8 and 77.3 respectively.

Example 2- Brain CT Database

For the second test, a complete database of brain CT images are considered. The database

contains 80 images, each of the size 512 × 512 pixels. Using the content adaptive mesh

generation method, a mesh is generated for each image in the database and then used

for registration of consecutive slices in the database. Each mesh contains approximately

3300 nodes and 6700 triangles. For better comparison of the speed of the proposed

method with pixel-based registration, an implementation of the curvature-based registra-

tion method [58] has been used. This implementation takes advantage of a fast Discrete

Cosine Transform (DCT) solver. Both of the methods are implemented and tested on

MATLAB without any specific optimization and the process of optimization is termi-

nated after 100 iterations. For the pixel-based curvature registration method, the DCT

solver is implemented using the embedded DCT function in MATLAB which uses a C

implementation, therefore is very fast and optimized while in the implementation of our

method, the solver is implemented using MATLAB scripts by the authors. However, the

proposed method performs faster. Table 2.2 summarizes the computational time of these

two methods, implemented on a desktop computer with an Intel Core i7 3.5 GHz CPU
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Table 2.2: Computational time and mean MSD error for pixel-based and mesh-based
registration methods

Pixel-based Method Mesh-based Method

Mean MSD 116.66 108.91

CPU Time 1534 sec 1320 sec

(a)

(b) (c)

Figure 2.12: (a) Displacement fields in horizontal and vertical directions, (b) Registered
image, (c) Difference image after registration

and 6 GB of RAM, as well as the mean MSD error of the methods.

2.3.3 Conclusion

A new efficient triangular mesh-based image registration technique is introduced. Ta-

ble 2.2 illustrates the results of comparison between pixel-based curvature registration

method with DCT solver [58] with the proposed mesh-based method. Even though MAT-

LAB is used for both of the methods, one needs to consider that the pixel-based approach

is using the internal optimized DCT function (written in C) to solve the linear system

at each iteration, unlike the mesh-based technique which uses non-optimized MATLAB

functions written by the authors. However the mesh-based technique outperforms the
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pixel-based method both in accuracy and speed. Using a MEX or C implementation of

the proposed method, higher speeds upto an order of magnitude faster than the MATLAB

implementation reported in Table 2.2 are achieved.

Usually image registration techniques, specially the non-parametric ones, work on

the pixel level. Multi-resolution techniques do not distinguish between regions that have

significant feature content and regions that are featureless/uniform. Octrees are a way

to adaptively sub-divide images based on feature content. However, the rectangular

boundaries in octrees do no suit feature boundaries that tend to be curvilinear. On

the other hand triangular meshes can accurately follow curvilinear feature boundaries.

However using triangular mesh has its own implications regarding the definition of the

problem of image registration and optimization of the geometric transformation needed

to be applied to template image to match the reference image. Here a new technique

for fast mesh-based image registration is proposed which can take into account these

implications and achieve high accuracy. This method has the dual advantage of a compact

representation and fast computation. Furthermore, images at any desired resolution can

be considered for registration since we only need to deal with the mesh nodes and not

image pixels.
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Chapter 3

Sparse Feature-Based Matching for 3D Surface

Reconstruction of Multi-View Scanning Electron

Microscope Images

3.1 Introduction

3D visualization from a set of 2D images has been an active research area in the last

20 years, with applications in scene reconstruction, movie making, medical visualization,

virtual tourism, mobile robot navigation, virtual reality, and computer aided design [2,

188, 189, 200].

Generally speaking, 3D reconstruction techniques can be categorizes into three major

classes: 1) single-view, 2) multi-view, and 3) hybrid. In single-view techniques, also

known as photometric stereo (PS), 3D surface reconstruction uses a set of 2D images from

a single view point but with varying lighting directions. After acquiring the input images,

the light directions are determined. This is followed by calculation of the surface normal,

albedo, and finally depth estimation. In multi-view class, 3D surface is reconstructed

by combining the information gathered from a set of 2D images acquired by changing

the imaging view. In such techniques, also known as structure from motion (SFM),

at first, feature points are detected in the input images. This is followed by finding

the corresponding points in the images (point-matching) and then using the projection

geometry theory for estimating the camera projection matrices. Finally, 3D points are

generated using linear triangulation. As one can imagine, the hybrid class combines

the advantages of the single-view and multi-view techniques for a more accurate 3D

reconstruction. Here, the focus is on the multi-view class, especially since for the problem

of 3D reconstruction using SEM images, having image set with varying light directions is
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difficult, but acquiring images with different titling angles are commonplace. Therefore,

having a good understanding of the feature-point detectors and also local descriptors can

be beneficial.

Feature point detectors are very popular in many different fields of Computer Vision

such as object recognition, 3D reconstruction, image retrieval and camera localization.

The found feature points are finally used for finding correspondence between different

images. The task of discrete image correspondence consists of three steps: 1) finding

interest points, such as corners, blobs and T-junctions, 2) assigning feature vectors to the

neighborhood of each interest point, and 3) matching of feature vectors between differ-

ent images. A wide plethora of detectors and descriptors, as well as their performance

comparisons can be found in the literature [115, 120, 94, 131].

The required level of invariance, as well as skew, anisotropic scaling and perspective

effects are usually considered when creating new local feature detectors and descriptors.

As for the interest point detector, Harris corner detector is the most widely used which is

based on the eigenvalues of the second-moment matrix [78]. The work of [115] allowed for

automatic scale selection, which is lacking in Harris corner detector, by use of determinant

and Laplacian of Hessian matrix, for detection of blob-like structures. This was further

refined in the work of [128] and resulted in Harris-Laplace and Hessian-Laplace feature

detectors. In terms of speed, the work of [119], replacing Laplacian of Gaussian (LoG)

filter with Difference of Gaussian (DoG) filter, not only gives satisfying approximations

but also improves the speed. As a conclusion, Hessian-based detectors are more stable

and repeatable than their Harris-based counterparts. Also use of determinant rather than

the Laplacian can be beneficial. Moreover, higher speeds in detection can be achieved by

using approximations like DoG.

For feature descriptors, Gaussian derivatives [60], moment invariants [132], complex

features [23] and steerable filters [64] can be mentioned as a few examples. Scale In-

variant Feature Transform (SIFT) is probably the most well-known descriptor which

works based on the histogram of local oriented gradients around the interest point [120].

Refined versions of SIFT like PCA-SIFT [94] and Gradient Location and Orientation His-
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togram (GLOH) [130] can also be mentioned. In Speeded Up Robust Features (SURF),

the detector is based on the Hessian matrix derived from integral images for reducing the

computational time. As for the descriptor, a distribution of Haar-wavelet responses in

the neighborhood of interest points are used [25].

As a result of increasing use of mobile devices and higher resolution images, the need

for a faster and more robust image feature descriptor is of high importance [37]. As for

typical SIFT and SURF, at least a 64-vector of 4 byte floating points is needed which

adds up to 256 bytes. In general, three classes of approaches are used for reduction of

this number [37]:

1. Use of dimensionality reduction techniques such as Principal Component Analysis

(PCA) [130] or Linear Discreminant Embedding (LDE) [86];

2. Quantization of floating-point coordinates into integers coded on fewer bits [193,

198, 36]

3. Binarizing the descriptor [175, 192].

All the above mentioned techniques have been satisfactorily used and provided rea-

sonable results. But as it is obvious, computing a long descriptor and then shortening it is

not computationally efficient. Binary Robust Independent Elementary Features (BRIEF)

aims to remedy this problem by building short descriptors directly.

Aiming at lowering the computational costs of common feature detectors and local

image descriptors, such as SIFT, ORB is built based on the well-known FAST [162]

keypoint detector and BRIEF [37] descriptor, hence called ORB (Oriented FAST and

Rotated BRIEF) [164]. As for FAST, even though it is efficient in finding corner keypoints,

it lacks the orientation information. So in the first step, orientation operator using a

centroid technique [161] is added to FAST. The same problem occurs for BRIEF descriptor

which is very sensitive to in-plane rotation. ORB is designed to remedy these problems.

In this chapter, these four well-known methods are compared for surface reconstruc-

tion of SEM images. The SEM as a 2D imaging microscope has been widely used in
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biological and materials sciences to analyze the surface properties of micro samples. Hav-

ing 3D surface models from SEM micrographs would provide realistic anatomic shapes

of microscopic objects which allows for informative visualization and quantitative mea-

surements of the samples being investigated. The contributions of the chapter can be

summarized as follows:

• A new optimized multi-view approach to accurately estimate SEM extrinsic calibra-

tion and its 3D surface reconstruction is designed. The method combines multiple

view geometry with a global optimization strategy namely Differential Evolutionary

(DE) algorithm to reconstruct 3D surfaces from 2D SEM images.

• In the case of multi-view 3D SEM surface reconstruction, the process requires re-

peated image orientation estimation based on detected and corresponded feature

points. The estimation has a crucial impact on the quality of 3D reconstructed

shape model. As an important contribution, extensive comparisons are provided

to examine the application of SIFT, SURF, BRIEF, and ORB algorithms for both

accurate SEM extrinsic calibration and its 3D surface modeling.

• Image feature descriptor algorithms have been widely applied on generic digital

images as well as video streams to perform several tasks in computational imaging

including image registration, object localization, and object tracking. The current

work initiates the study of image feature descriptor algorithms for images obtained

by SEM which are naturally different from generic images. This is usually the

case since the features are not very distinct in SEM images in comparison to the

scenes usually used in computer vision applications which contain sharp edges,

multiple objects with distinguishable boundaries and big variations of intensities;

not to mention the difference in nature and amount of noise and artifacts within

the scenes.

The rest of the chapter is arranged as follows: Section 3.2 contains an overview on

the methods. In Section 3.3, the problem of surface reconstruction is discussed in more

detail and the use of Differential Evolution (DE) for optimization is discussed. Section
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3.4 contains the results of the four methods for 3D surface reconstruction and qualitative

and quantitative comparisons will be given. Section 3.5 provides further discussion on

the subject and possible enhancements to be considered for future investigations. Section

3.6 concludes the chapter.

3.2 Methods

3.2.1 SIFT

Four stages of SIFT ([120]) are: 1) scale-space extrema detection, 2) keypoint localization,

3) orientation assignment and 4) keypoint descriptors. As the first stage, detection of

locations that are invariant to scale changes of the image is of high importance. This can

be accomplished by the well received work of [199] on scale space functions. Based on

the work of [114], a Gaussian function is considered as the scale-space kernel. The scale-

space function of an image, L(x, y, σ), can be derived using the convolution of the image

I(x, y) with the variable-scale Gaussian function G(x, y, σ). Stable keypoint locations can

then be detected by finding the scale-space extrema in the difference-of-Gaussian (DoG)

function convolved with the image as follows:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ) (3.1)

where k is a constant multiplicative factor. As pointed out by [114], D provides a good

approximation for the scale-normalized Laplacian of Gaussian, σ252 G. Studies of [129]

have shown that the extrema of σ252 G provide the most stable features. For this, each

octave of scale space (doubling of σ ) is divided into s intervals, hence k = 21/s.

For detecting the local extrema of D(x, y, σ), each sample point is compared with its

26 neighbor points in a 3 × 3 × 3 neighborhood, considering the current image and the

above and below images. Frequency of sampling in each scale, as well as, frequency of

sampling in the spatial domain are two important parameters which not only affect the

repeatability of the algorithm, but also the computational cost. Several detailed tests
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in [120] resulted in choosing 3 scale samples per octave and σ = 1.6 as for the prior

smoothing Gaussian.

Accurate localization of the keypoints in the set of candidate keypoints is done by

fitting a 3D quadratic function derived from the Taylor expansion of the scale-space

function D(x, y, σ) as follows:

D(X) = D +
∂DT

∂X
X +

1

2
XT ∂

2D

∂X2
X (3.2)

whereX = (x, y, σ)T is the offset from the sample point. Rejecting the unstable points can

be done by thresholding the function value at the extremum D(X̂) = D+ 1
2
∂DT

∂X
X̂. Usually

the extrema with |D(X̂)| less than 0.03 are removed, which represents the keypoints

located in low contrast regions that are highly affected by noise. Thresholding the ratio

of principal curvatures can also eliminate poorly defined feature points near the edges.

For this, the Hessian matrix H is computed at the location and scale of the keypoint:

H(X) = [
Dxx Dxy

Dxy Dyy

] (3.3)

The ratio between the two eigenvalues (r), largest to smallest, can be computed by

considering the trace (Tr) and determinant (Det) of the Hessian matrix as follows:

Tr(H)2

Det(H)
=

(r + 1)2

r
(3.4)

Usually the keypoints for which the ratio r is less than 10, are eliminated. Rotation

invariance can be achieved by assigning proper orientation to each keypoint. Considering

the Gaussian smoothed image at each scale, L, the gradient magnitude m(x, y) and

orientation θ(x, y) can be defined by 2
√
L2
x + L2

y and tan−1 Ly

Lx
respectively, where Lx and

Ly are computed using a central difference approximate. Then an orientation histogram

is created within a neighborhood of the keypoint. The histogram has 36 bins, with each

sample added by a weight computed by its gradient magnitude and also by a Gaussian

weighted circular window. Any local peak with 80% value of the highest peak is used for
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creating a new keypoint with that orientation.

Final step of the SIFT is creating the local image descriptor. Up until now, loca-

tion, scale and orientation are determined for each keypoint. The local image descriptor

should be computed so it makes the method invariant to differences in illumination and

viewpoint. Using the gradients computed at the time of orientation assignment and a

Gaussian weighting function with σ equal to one half the width of the descriptor window,

the gradient information over each 4 × 4 subsection in a 16 × 16 neighborhood around

the keypoint are combined into 8 bins histograms, which result in a 4 × 4 × 8 = 128

element feature vector for each keypoint. Normalizing the feature vectors to unit length

will reduce the effect of linear illumination change. Thresholding the normalized vector

with 0.2 as threshold and re-normalizing it again will reduce the effects of large gradient

magnitudes.

3.2.2 SURF

For SURF, scale and rotation invariance are intended in the process of design ([25]).

Upright SURF (U-SURF) is the scale-only invariant version of SURF. Starting with the

Hessian detector, given a point X = (x, y) in an image I, the Hessian matrix at scale σ

is defined as:

H(X, σ) = [
Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)
] (3.5)

where Lxx(X, σ) is the convolution of the Gaussian second order derivative with image I

at point X. The same goes for Lxy(X, σ) and Lyy(X, σ) too. For SURF, a box filter ap-

proximation of these Gaussian functions are used. These approximations are represented

by Dxx, Dyy and Dxy. Using these approximations, the determinant of the approximate

Hessian matrix can be derived as:

det(Happrox) = DxxDyy − (0.9Dxy)
2 (3.6)
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It should be noted that the filter responses are normalized with respect to the size of

the mask. Without the need for image pyramids which require Gaussian smoothing and

sub-sampling of the images iteratively, here the box filters are up-sampled to achieve the

scale information. This leads to masks of sizes 9× 9, 15× 15, 21× 21, 27× 27 pixels for

different scales. Localizing the interest points in the image and over different scales are

done by utilizing a non-maximum suppression in a 3 × 3 × 3 neighborhood. Finally the

maxima of the determinant of the Hessian matrices are interpolated in scale and image

space with the method proposed in the work of [32].

For defining the descriptor, first the orientation at each interest point needs to be

assigned. This is done by combining the results of the Haar wavelets’ responses in a

circular neighborhood around the interest point, using Gaussian weights. For the case of

U-SURF this step is not necessary. Next, a square region centered around the interest

point and oriented along the estimated orientation in the previous step is created. The

size of this square is 20s, s being the scale. This region is further divided into smaller

4 × 4 sub-regions, each of the size 5 × 5. Considering dx as the horizontal Haar wavelet

response and dy as the vertical Haar wavelet response, the four-dimensional descriptor V

for each sub-region is defined as V = (
∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|)where the summations

are computed over each sub-region. Having a vector of 4 for each of sub-regions (16) leads

to a vector of size 64 for each interest point, hence creating the SURF-64 descriptor. Other

versions of the descriptor, namely SURF-36 and SURF-128 can be computed in the same

manner, using different divisions of the interest region, or computation of the feature

vectors in each region.

3.2.3 BRIEF

Classification of image patches can be effectively done by a small number of pairwise

intensity comparisons, as previously studied in the work of [142] using Naive Bayesian

classifier and also in the work of [107] using randomized classification trees. Based on

this assumption, a test τ on patch P of size S × S can be defined:
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τ(P ;x, y) :=


1, if P (x) < P (y)

0, otherwise

(3.7)

where P (x) is the pixel intensity in a smoothed version of P at x = (u, v)T . A set of

binary tests can be defined by choosing a set of nd (x, y)-location pairs. Therefore the

BRIEF descriptor can be defined as an nd-dimensional bit-string as follows:

fnd
(P ) :=

∑
1≤i≤nd

2i−1τ(P ;xi, yi) (3.8)

Typically nd is chosen to be 128, 256 or 512 depending on the desired speed, storage

efficiency and rate of recognition. Usually the BRIEF descriptor is referred to as BRIEF-

k, with k = nd/8, representing the number of needed bytes for storing the descriptor.

Given that in (7) only the information at single pixels are considered, the need for

pre-smoothing on the patches to reduce the sensitivity to noise becomes more apparent.

Generally speaking, more difficulty in matching requires more smoothing which means

larger variances in Gaussian kernels. Typically the variance is chosen to be 2 and the

discrete kernel window is of size 9× 9. Another important factor is how to choose nd test

locations (xi, yi) to be used in (7) for generating the descriptor. In the work of [142] five

different sampling geometries are tested as follows:

1. (X, Y ) i.i.d. Uniform(−S
2
, S

2
);

2. (X, Y ) i.i.d. Gaussian(0, 1
25
S2);

3. X i.i.d. Gaussian(0, 1
25
S2), Y i.i.d. Gaussian(xi,

1
100
S2);

4. (xi, yi) randomly sampled from discrete locations of a coarse polar grid;

5. ∀i : xi = (0, 0)T and yi all possible values on a coarse polar grid containing nd

points.

Tests conducted reveal that second, third and fourth strategies are superior to the

rest, hence usually utilized in BREIF description generation. Last but not least, the
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distribution of Hamming distances between the defined descriptors plays a significant

role in the amount of recognition rate.

Different tests reveal the superiority of the BRIEF descriptor, in terms of computa-

tional speed. In terms of accuracy and recognition rate, since the descriptor lacks rota-

tional invariance, satisfied by SURF for example, BRIEF performs poorly in matching

pairs that have big rotation angles.

3.2.4 ORB

ORB is built based on the well-known FAST ([162]) keypoint detector and BRIEF ([37])

descriptor, hence called Oriented FAST and Rotated BREIF (ORB). In FAST, corners

are detected by applying an intensity threshold in a circular ring around the center.

Usually the radius of the circle is mentioned in the name of the FAST operator, for

example FAST-9. In ORB, to make the FAST less responsive along the edges, the Harris

corner measure ([78]) is used for ordering the found keypoints in terms of their cornerness.

Also, a scale pyramid scheme is used for detecting corners in different scales. For the

intensity centroid technique for orientation assignment, assuming the general equation

for the moments of a patch as:

mpq =
∑
x,y

xpyqI(x, y) (3.9)

I(x, y) being the image, the centroid can be found as follows:

C = (
m10

m00

,
m01

m00

) (3.10)

Constructing a vector from the corner’s center, O, to the centroid ~OC, the orientation of

the patch is θ = atan2(m01,m10), atan2 being the quadrant-aware arctangent.

Due to lack of orientation invariance, BRIEF’s matching performance is very poor in

case of having rotations of bigger than a few degrees. To remedy this, [164] proposed a

learning technique over all possible binary tests, to find the ones with high variance and

less correlation to ensure higher discriminativity. Creating a set of 300k keypoints from
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the PASCAL 2006 database ([53]), as well as all the binary tests drawn from a 31 × 31

pixel patch is the first step, each test is a pair of 5 × 5 sub-window of the patch. After

running each test against all training patches, the tests are ordered by their distance from

a mean of 0.5, creating the vector T . The next step is a greedy search in order to find

the 256 most discriminative tests.

3.3 3D Surface Reconstruction of Electron Microscopy

Images

3.3.1 Scanning Electron Microscope Imaging

The Scanning Electron Microscope (SEM) utilizes electrons instead of light to determine

the surface characteristics of microscopic samples. An SEM includes five principle parts

as follows: 1) An electron gun, 2) Scanning system, 3) Detectors, 4) Lens control, and 5)

Display monitors ([30]).

Electron beams which are emitted from the electron gun in a vacuum are able to

enforce two different signals: Secondary Electrons (SE), and Back-Scattered Electrons

(BSE). Each signal produces different type of images. While SE can exhibit greater res-

olution and topography on the surface, BSE can provide greater contrast and brightness

between materials comprising a microscopic sample ([146]).

Since SEM produces 2D images, to effectively visualize and measure the surface prop-

erties, we need to reconstruct the 3D surface shape from SEM images. Restoring 3D

surface models from SEM micrographs would provide realistic anatomic shapes of micro

objects which definitely allow for informative visualization and quantitative measure-

ments of the system being investigated.
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3.3.2 Feature Detectors/Descriptors for 3D SEM Surface Re-

construction

The proposed framework described here is based on an optimized multi-view approach.

The major part of the framework is doing a refinement process by defining a cost function

for any set of parameters (initial position of 3D points and extrinsic SEM parameters

which specify rotation and translation from one view point to another) to find the best

fitness in the set. Therefore, parameterization of rotation and translation space is the

most important part of the work. To this end, estimation of the rotation and translation

from the set of corresponding points between two images in the image set should be the

first step. This optimization is unlike 2D image registration problems (rigid, deformable

etc) in which the motion of the objects happen in an in-plane manner ([18, 16]). Here,

since the position of the 3D object is changing with respect to the camera view-point,

additional constraints are needed to be applied for the estimation of motion which results

in a more accurate representation of the 3D object. For this purpose, we employ highly

used feature extractor algorithms such as SIFT, SURF, BRIEF, or ORB along with

KNN ([5]) and RANSAC ([59]) to find true matching points in the image pair. We next

take advantage of epipolar geometry ([79]) to estimate the rotation and translation, and

perform linear triangulation to initialize the 3D position of all corresponding points. The

last step is a refinement process by defining a cost function for any set of parameters as

to whether the set is a good or bad set. Figure 3.1 shows the pipeline of our proposed

system.

To perform optimization, the most important part is to parameterize the space of

rotation and translation. For the purpose of better flexibility, the quaternion parameter-

ization ([79]) is applied to formulate the 3D rotation.

A quaternion is represented as z = a+ bi+ cj + dk, where a, b, c, d are real numbers

and i2 = j2 = k2 = −1. z is a unit quaternion if and only if:

|z| =
√
a2 + b2 + c2 + d2 = 1 (3.11)
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The rotation matrix representation is as follows:

R(z) =


a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab

2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 (3.12)

The translation vector of the second position with respect to the first position is

defined as t = (tx, ty, tz)
>. Considering the Equation (3.12) for rotation parameterization

and t for translation, the parameterization of two projection matrices will be determined

by a seven-dimensional vector θ = (a, b, c, d, tx, ty, tz)
>. Now, SEM extrinsic calibration is

equivalent to determining the parameter vector θ∗ as Equation (3.13). In this equation,

P is the SEM projection matrix which encapsulates rotation and translation (step (4) in

Figure 3.1).

θ∗ = arg min
θ

(
N∑
i=1

‖xi1 − P (Xi)‖2 + ‖xi2 − P (θ,Xi)‖2) (3.13)

In recent and generic 3D surface reconstruction models, the iterative bundle adjust-

ment strategies were employed to solve this kind of equation. The bundle adjustment

algorithms are among local minimizer techniques which suffer from different problems.

For example, they usually work on differentiable functions only and it is important to

have an initial guess close to the real answer to converge. In contrast to the tradi-

tional bundle adjustment approaches, Differential Evolutionary (DE) algorithm ([40]) is

a global and stochastic optimization approach which does not tolerate these constraints

and is known as one the fastest and most reliable evolutionary algorithms to optimize

real number functions. DE as a genetic searching based optimization algorithm uses gen-

erated populations within the parameter space, then iteratively updates them to find the

best possible fitness for an optimization problem. The initial population is modified from

one generation to another by using two major operators: 1) Mutation, and 2) Crossover

([40]). The population generation will continue until a termination condition is met (i.e.
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number of generations). In the proposed framework, we use a DE based algorithm to

find the best values for both 3D position of all matching points as well as the extrinsic

parameter of the SEM.

We define θk,G as the k-th parameter vector in the G-th generation by:

θk,G = (ak,G, bk,G, ck,G, dk,G, txk,G, tyk,G, tzk,G) (3.14)

where k=(1, 2, ..., Ptotal), and G=(1, 2, ..., Gmax). We assign the size of the population to

POPULATIONtotal, and the maximum number of generations to Gmax. We then use the

mutation operator pk,G = θp,G+S×(θq,G−θr,G) to expand deviation from one generation

to the next in the population set. S ∈ [0, 2] and θp,G, θq,G, θr,G are three individual random

agents in the population. The DE algorithm for solving the problem in Equation (3.13)

is presented in Algorithm 1. Based on the DE description, the best values of parameters

CR ∈ [0, 1] and S ∈ [0, 2] would be achieved by executing several experiments on the

problem. We started with seven-dimensional parameter vector (θ∗) which is randomly

assigned from the uniformly distributed numbers in the range (0,1) at generation G=1.

After that, in each generation (G+1), a new parameter vector consisting of rotation

and translation will be generated by adding the weighted difference vector between two

population members to a third member. After Gmax iterations (termination condition)

ensuring convergence (Gmax=1000 based on our experiments), the population member θ∗

with the highest fitness is evaluated to present the best solution to the 3D SEM surface

reconstruction problem.

Algorithm 1. Proposed DE algorithm for 3D SEM surface reconstruction

Input: Matching points, initial SEM extrinsic parameters and 3D locations

Output: The best fitness of SEM extrinsic parameters and 3D points

begin

Doing Initialization:

set S, CR, POPULATIONTotal, Gmax;

Initialize the population {θk;(1<=k<=POPULATIONTotal)} randomly;
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Figure 3.1: Pipeline of 3D surface reconstruction from Electron Microscopy images. At
first, multiple images of the specimen from different perspectives are taken. Then, we
estimate the relative position including rotation and translation based on the matching
points in the image set. After estimating the image motions, the 3D position of all
corresponding points would be reconstructed using linear triangulation. The final step is
doing an optimization process to find the best match for SEM’s extrinsic parameters and
all of the initial 3D points.

for (G=1; G < Gmax; G ++)

for (k=1; k<=POPULATIONTotal; k++)

Doing Mutation and Crossover operations:

select three individual agents θp,G, θq,G, θr,G randomly;

L = U(0,1);

if L < CR

pk,G = θp,G + S × (θq,G − θr,G)

else

pk,G = θk,G;

if pk,G < θk,G;

θ∗ = pk,G;

end.

end.

return θ∗

end.
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Figure 3.2: (A) Shows a set of 2D images from tapetal cell of Arabidopsis thaliana, which
is obtained by tilting the specimen stage 9 degrees from one to the next in the image
set. (B) Shows five images from TEM copper grid. These images were obtained by tilting
the specimen stage 7 degrees from one to the next in the image sequence. The white
circle specifies a part of the specimen which will be 3D reconstructed by the proposed
framework.

3.4 Experimental Results

To evaluate and compare the performance, reliability, and accuracy of the SIFT, SURF,

BRIEF, and ORB algorithms in 3D SEM surface reconstruction, several experiments are

carried out in this section. In Section 3.4.1, the experimental setup and images’ properties

will be explained. Section 3.4.2 contains 3D visualization results obtained using the SIFT,

SURF, BRIEF, and ORB algorithms for qualitative comparisons.

3.4.1 Experimental Setup

The major parts of the proposed 3D SEM surface reconstruction framework were de-

veloped in Java SE 7 and MATLAB 2012a. We employed 64-bit Windows 7 Operating

system on a PC with 3.00 GHz Intel Dual core CPU, 4MB cache, and 4GB of RAM. Im-

age sets and their attributes along with SEM configurations are shown in Table 1. Figure

2 shows only two image sets including tapetal cell of Arabidopsis thaliana and TEM cop-

per grid obtained from different view points. The term TEM stands for Transmission

Electron Microscopy.
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Table 3.1: Experimental setup including image sets, and SEM configuration.

Image sets (1): tapetal cell of Arabidopsis thaliana

(2): TEM copper grid

(3): diatom frustule

(4): pollen grain from Brassica rapa

(5): TEM copper grid bar

Images properties (1): 2560*1920 grayscale, 512 dpi
(2): 2560*1920 grayscale, 512 dpi
(3): 2560*1920 grayscale, 512 dpi
(4): 854*640 grayscale, 512 dpi
(5): 512*384 grayscale, 512 dpi

Number of Images (1): 5 SEM images
(2): 5 SEM images
(3): 3 SEM images
(4): 4 SEM images
(5): 5 SEM images

Rotation Angle (1): 9 degrees
(2): 7 degrees
(3): 15 degrees
(4): 3 degrees
(5): 11 degrees

SEM detector SE (mix)
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Figure 3.3: Qualitative visualization of 3D SEM surface reconstruction of tapetal cell of
Arabidopsis thaliana using different image feature detector algorithms including SIFT,
SURF, BRIEF, and ORB.

3.4.2 Qualitative 3D Visualization

3D point clouds, 3D surface meshes, and 3D shape models of tapetal cell of Arabidopsis

thaliana and TEM copper grid which were reconstructed by using the proposed framework

using different image feature detector algorithms are shown in Figures 3.3 and 3.4. By

considering 2D images, it seems that the SIFT and SURF algorithms would assist creating

more realistic 3D surface models than ORB and BRIEF.

3.4.3 SEM Extrinsic Calibration

In this experiment, we examine and compare the accuracy and reliability of the SIFT,

SURF, BRIEF, and ORB image feature detector algorithms along with the proposed

framework to SEM rotation estimation. We are given the rotation angles, however the
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Figure 3.4: Qualitative visualization of 3D SEM surface reconstruction of TEM copper
grid using different image feature detector algorithms including SIFT, SURF, BRIEF,
and ORB.

rotation axis and translation vector are not provided by SEM as a predefined rule. Here,

we only use two images in each image set and set the maximum number of DE generations

to 1000. We chose 1000 number of DE generations based on our previous experiments

illustrated in ([188]).

We eventually got rotation matrices Rt
SIFT , Rt

SURF , Rt
BRIEF , Rt

ORB and translation

vectors ttSIFT , ttSURF , ttBRIEF , ttORB for the tapetal cell of Arabidopsis thaliana (tilting by

9 degrees) as follows. Each matrix is labeled by its associated image feature detector.
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Rt
SIFT =


1.0000 0.0005 0.0015

0.0007 0.9822 −0.1877

0.0014 0.1877 0.9822

 , Rt
SURF =


1.0000 0.0006 0.0019

0.0009 0.9761 −0.1973

0.0014 0.1973 0.9761



Rt
BRIEF =


0.9407 0.0009 0.0031

0.0003 0.9101 −0.2408

0.0031 0.2408 0.9101

 , Rt
ORB =


1.0000 0.0004 0.0029

0.0007 0.9361 −0.2053

0.0029 0.2053 0.9361



ttSIFT = [0.3727 0.1020 0.0002], ttSURF = [0.2347 0.1015 0.0017]

ttBRIEF = [0.1799 0.0043 0.0008], ttORB = [0.1915 0.1060 0.0012]

By doing the same experiments on TEM copper grid (tilting by 7 degrees), We ob-

tained a rotation matrices Rc
SIFT , Rc

SURF , Rc
BRIEF , Rc

ORB and translation vectors tcSIFT ,

tcSURF , tcBRIEF , tcORB as follows:

Rc
SIFT =


1.0000 0.0011 0.0006

0.0003 0.9928 −0.1311

0.0019 0.1311 0.9928

 , Rc
SURF =


1.0000 0.0016 0.0001

0.0007 0.9703 −0.1689

0.0021 0.1689 0.9703



Rc
BRIEF =


1.0000 0.0009 0.0004

0.0006 0.9033 −0.2317

0.0014 0.2317 0.9033

 , Rc
ORB =


0.9817 0.0030 0.0027

0.0007 0.9451 −0.2018

0.0025 0.2018 0.9451



tcSIFT = [0.1007 0.0019 0.0029], tcSURF = [0.1304 0.0109 0.0013]

tcBRIEF = [0.8871 0.0044 0.0043], tcORB = [0.9413 0.0026 0.0028]
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By assuming the basic 3D rotation matrices presented in ([79]), it asserts that the

rotation axis using all four image feature detectors are over the X axis, and they offer

promising results. However the rotation and translation estimations are a little different

from each other.

Since we already had a ground truth rotation in our image set, in the next experiment,

we examine the 3D rotation estimation error (∆R). Results obtained by this experiment

are shown in Table 2. The results presented in Table 2 show that the SIFT could assist

to estimate the rotation angle in a more accurate fashion than the SURF algorithm, and

the SURF detector is better than the BRIEF and ORB.

3.5 Discussion

This chapter presented a comparative study on the performance, accuracy, and reliability

of four feature detector algorithms including SIFT, SURF, BRIEF, and ORB on 3D SEM

surface reconstruction. In the experiments demonstrated here, promising results on SEM

extrinsic calibration and its 3D surface modeling are achieved. The calibration measures

obtained from this experiment have been based on only rotation and translation without

flipping and scaling. We obtained the 2D SEM micrographs by rotating the SEM stages

around different degrees (3-11 degrees), and we know that the SIFT, SURF and ORB are

rotation invariant while BRIEF is not. As shown in Table 3.2, while all four algorithms

were enable to estimate the rotation axis, employing the BRIEF algorithm provided less

precise results in SEM rotation calibration, and in the other side, the SIFT algorithm

is the most accurate between these feature point detectors regarding the SEM extrinsic

calibration. Since a SEM cannot supply a predefined translation information, We never

performed ground truth evaluation for translation vectors, but our estimation for transla-

tion calibration have worked for 3D SEM surface modeling. As indicating in Figures 3.3

and 3.4, SIFT and SURF algorithms produced much more convenient 3D surface models

by detecting more image features and better estimating the SEM parameters. Overall,

from the presented results, it can be seen that SIFT outperforms the rest of the methods

in terms of accuracy in the final estimation. Of course this is mainly due to the higher
61



www.manaraa.com

Table 3.2: Accuracy and reliability validation of the different image feature detector
algorithms by employing the proposed 3D SEM surface reconstruction framework. ∆R
is given as Rreal − Restimated, indicating error for estimating the 3D rotation. Rotation
angles show the ground truth 3D SEM rotations(Rreal). In each row we used only two
images in the set.

Image set Total matches Rotation angle ∆R Feature detector algorithm

tapetal cell 509 9 degrees 5.07E-04 SIFT
438 9 degrees 5.48E-04 SURF
219 9 degrees 4.71E-03 BRIEF
255 9 degrees 3.29E-03 ORB
441 18 degrees 7.12E-04 SIFT
402 18 degrees 8.05E-04 SURF
184 18 degrees 6.44E-03 BRIEF
247 18 degrees 5.91E-03 ORB

TEM copper grid 830 7 degrees 8.33E-04 SIFT
664 7 degrees 8.73E-04 SURF
283 7 degrees 4.91E-03 BRIEF
304 7 degrees 3.97E-03 ORB
722 14 degrees 8.84E-04 SIFT
601 14 degrees 8.93E-04 SURF
241 14 degrees 5.14E-03 BRIEF
298 14 degrees 4.19E-03 ORB

diatom frustule 317 15 degrees 7.13E-04 SIFT
291 15 degrees 7.22E-04 SURF
173 15 degrees 5.03E-03 BRIEF
229 15 degrees 4.16E-03 ORB
286 30 degrees 7.41E-04 SIFT
270 30 degrees 8.05E-04 SURF
114 30 degrees 5.41E-03 BRIEF
202 30 degrees 4.64E-03 ORB

pollen grain 749 3 degrees 8.33E-04 SIFT
721 3 degrees 8.91E-04 SURF
610 3 degrees 4.17E-03 BRIEF
583 3 degrees 4.45E-03 ORB
673 6 degrees 8.84E-04 SIFT
654 6 degrees 8.97E-04 SURF
511 6 degrees 4.34E-03 BRIEF
475 6 degrees 4.81E-03 ORB

TEM copper grid bar 837 11 degrees 7.11E-04 SIFT
796 11 degrees 7.33E-04 SURF
588 11 degrees 5.02E-03 BRIEF
649 11 degrees 4.19E-03 ORB
802 22 degrees 7.59E-04 SIFT
781 22 degrees 7.84E-04 SURF
546 22 degrees 5.57E-03 BRIEF
611 22 degrees 4.91E-03 ORB
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number of matched points between image pairs under investigation. SURF performs in

the same order as SIFT, even with fewer number of matched points. ORB and BRIEF

rank next. This is mainly because they are not designed to be rotation invariant. How-

ever, a close inspection of the produced results reveal the major shortcomings of sparse

feature-based approaches. Even though we deduced that SIFT feature detector/descrip-

tor performs better than the rest in estimating the fundamental matrix and SEM extrinsic

calibrations, however, the final 3D surface reconstruction suffers greatly from smoothed

edges and boundaries. This is due to limited number of matched pixel between the im-

ages. Use of dense descriptors for matching between the image pairs can be considered

as means for increasing the quality of the resulted 3D reconstructed surface [11]. In such

techniques, the first step of matching which involves keypoint detection is eliminated and

the descriptors are computed for all the pixels of the images. This requires a different

formulation of the energy functional for optimization, with additional constraints to en-

sure smooth flow fields from one image to another. This will be the focus of the next two

chapters of the dissertation.

3.6 Conclusion

The scanning electron microscope (SEM) utilizes electrons instead of light for imaging of

microscopic structures. A typical system usually consists of an electron gun, a scanning

system, set of detectors, lens control equipment and displaying monitors. The images

acquired from SEM are 2D images of the microscopic structures. As is obvious, visu-

alization and more accurate investigation of the structures requires a 3D model instead

of a set of 2D images. In this chapter the use of four well-known feature descriptors,

SIFT, SURF, BRIEF and ORB are further investigated for 3D surface reconstruction

of SEM imaging data. The common steps in such techniques are usually interest points

(corners, blobs, T-junctions) extraction, descriptor vector assigning in the neighborhood

of each interest point and finally matching these feature points between different images

and forming correspondences to be used for further analysis. Starting from the feature
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points and descriptors created by the four above-mentioned methods along with nearest

neighbor (NN) search and RANdom SAmple Consensus (RANSAC), the matching points

between image pairs are detected. taking advantage of epipolar geometry the rotation

and translation matrices are estimated and 3D position of all the corresponding points

are initialized using linear triangulation. The final step is the use of Differential Evolution

(DE) for finding the best fitness for SEM extrinsic parameters and 3D points.

Multiple tests are conducted and qualitative and quantitative measures are presented

for better comparison of the used feature detectors and descriptors for 3D reconstruction

of SEM image data. In all of the cases, SIFT performs better than the others, with SURF

being the next best method. Of course, number of matched points play a significant role

in rotation/translation estimation and subsequently in the final 3D reconstructed surface.

The difference is the design process of the said feature detectors/descriptors and the fact

that some are not rotation invariant while some are. However, the outcome will help us

build a more rigorous understanding of the problem in order to propose a more accurate

and robust framework for generating high quality 3D reconstructions. This will be the

focus on the next two chapters of the dissertation.
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Chapter 4

Sparse-Dense Correspondence for High Quality 3D

Reconstruction of Microscopic Samples

4.1 Introduction

Scanning Electron Microscopy (SEM) imaging has been a crucial technique of various

studies in biomedical, mechanical, and materials sciences [31, 51, 88]. The SEM has

contributed tremendously to observations of surface structure of microscopic samples on

a variety of scales down to 1nm, employing magnification factors of around ×100k. In

a SEM, the source of illumination comes from a focused electron beam which scans the

surface of the sample, interacting with atoms of the surface. The secondary electron

(SE) or back-scattered electron (BSE) detectors are aimed to capture the signals gen-

erated by interactions of the beam with the surface. The detection of BSE signal has

proven to be beneficial to compositional studies of materials, while SE suits topograph-

ical analysis of the samples being examined. However, SEM micrographs still remain

two-dimensional (2D). Therefore, having a high fidelity three dimensional reconstruction

for a more effective analysis of the surface attributes and topography of the microscopic

sample is of high importance. This has attracted many researchers to devise robust

and reliable algorithms for 3D reconstruction of microscopic samples captured by SEM

[187, 188, 186, 167, 124, 52, 45].

Multiview stereopsis has been an active research area in computer vision community

in the recent years, with applications in scene reconstruction, movie making, medical

visualization, virtual tourism, mobile robot navigation, virtual reality, and computer

aided design [140, 2, 80]. General 3D scene reconstruction techniques can be categorized

into three major classes: 1) single-view (also known as Shape from Shading (SfS)), 2)
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multi-view (also known as Shape from motion (SfM)), and 3) hybrid [188]. In single-view

class, a set of 2D images from a single viewpoint with varying lighting conditions are

used for reconstruction. In contrast, in multi-view class, 3D surface is reconstructed by

combining the information gathered from a set of 2D images acquired by changing the

imaging viewpoint. In such techniques, at first, feature points are detected in the input

images. This step is followed by finding the corresponding points in the images and then

using the projection geometry theory for estimating the camera projection matrices. The

hybrid class combines the advantages of the single-view and multi-view techniques for a

more accurate 3D reconstruction [188]. Here, we put the focus on the multi-view class

and therefore, having a good understanding of the feature-point detectors and also local

descriptors is beneficial.

Feature detection and feature description are among the core components in many

computer vision algorithms and a wide range of approaches and techniques have been

introduced in the past few decades to address the need for more robust and accurate

feature detection/description. Even though there is no universal and exact definition of a

feature that is independent of the specific application intended, methods of feature detec-

tion can be categorized into four major categories [26]: edge detectors, corner detectors,

blob detectors and region detectors. The process of feature detection is usually followed

by feature description which uses a set of algorithms for describing the neighborhood of

the detected features. Generally speaking, the methods of feature description can also

be classified into four major classes [26]: shape descriptors, color descriptors, texture de-

scriptors and motion descriptors. By detecting the features and defining the descriptors,

one can use the new representation of the input images for a wide range of applications

such as wide baseline matching, object and texture recognition, image retrieval, robot

localization, video data mining, image mosaicing and recognition of object categories

[183, 200].

Direct application of general purpose multi-view sparse/dense 3D reconstruction ap-

proaches for reconstruction of microscopic samples can be problematic. In single-view 3D

surface reconstruction, creating a full model of the microscopic sample is generally not
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possible since the images are limited to only one view-point. Moreover, recreating the

SEM micrographs of the sample under different illumination conditions is difficult. On the

other hand, multi-view approaches offer a more general and achievable framework for the

task. Using such techniques, a more realistic and complete reconstruction can be created.

However, the need for more sophisticated matching methods that require higher computa-

tional power is inevitable. Use of multi-view techniques for 3D reconstruction of Scanning

Electron Microscopy (SEM) images have been explored in the literature in the past few

years [187, 186, 167, 52, 220]. Still, there is room for improvement in accuracy and the

needed computational resources for 3D reconstruction. Sparse feature based approaches

aim to find a set of features in the input images to be represented by an aggregated set

of descriptors acquired from their neighborhood. After matching between the features

in the images acquired from multiple viewpoints, the projective transformations between

the matches are estimated and the set of 3D points are generated. The bottleneck of such

techniques is in the first step of the procedure: feature detection. General purpose fea-

ture detection techniques are designed for detection of common features that are seen in

everyday images and not necessarily the ones that may be present in SEM micrographs.

These general features include edges, corners, T-junctions, blobs etc. This is mainly prob-

lematic due to presence of noise that can be observed in SEM micrographs. This makes

the feature detection unreliable and therefore, there is need for manual adjustment of

various parameters involved in the process. Moreover, the microscopic samples/surfaces

to be imaged may contain areas with minimal intensity and depth variations in which

no features can be detected. This causes the features, and subsequently 3D points, to be

distributed non-uniformly. This will greatly affect the subsequent mesh generation and

surface reconstruction steps. It should also be noted that several images from different

view points are needed for building a realistic reconstruction of the microscopic sample.

This increases the computational complexity of the methods. Still, even with the use of

multiple views, very fine details are missed when using sparse feature based approaches.

In case of micrographs such as those acquired in biological studies, the combination of

numerous microscopic objects with varying sizes cause the sparse feature-based approach
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to fail. These problems can be remedied by using dense correspondence between multi-

view pixels. This can enable realistic topographical reconstruction of the samples and

also eliminate the manual effort needed for acquiring more samples.

In this chapter the use of sparse and dense correspondence for high resolution 3D

reconstruction of stereo SEM micrographs is introduced and investigated in great depth

and detail. Using the proposed approach, we are able to reconstruct high quality uniform

meshes of the imaged surfaces which can be later used for further quantitative analysis

regarding the topology and surface attributes. The contributions of the current work can

be summarized as follows:

1. A new optimized framework for high fidelity 3D surface reconstruction from multi-

view SEM micrographs is designed and developed. This is achieved by combining a

sparse feature matching approach with high quality dense matching which results

in a highly realistic reconstruction of the microscopic sample.

2. An a contrario RAndom SAmple Consensus (RANSAC) based sparse matching

methodology for eliminating manual specification of parameters along with a quasi-

euclidean epipolar rectification for improving depth estimation.

3. A new method combining sparse-dense SIFT feature matching and representation

of the energy minimization functional as a factor graph with loopy belief propa-

gation (LBP) optimization for accurate construction of dense vertical/horizontal

displacement maps. Given the result of stereo rectification step, the disparities are

grossly concentrated along the horizontal direction. This will simplify the process of

depth estimation since horizontal disparities are directly proportional to the actual

depth. The appropriate coefficient can be estimated by the known titling of the

specimen stage during imaging.

The rest of the chapter is organized as follows. Section 4.2 contains detailed expla-

nation on the various steps of the proposed method. It starts with a brief overview of

the proposed method followed by subsections on SEM imaging protocol, Scale Invari-

ant Feature Transform (SIFT) feature detection and description, epipolar rectification
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(a)

(c) (b)

(d) (e) (f)

Figure 4.1: Overview of the proposed method for high fidelity 3D reconstruction of micro-
scopic samples using a pair of stereo SEM images captured by tilting the specimen stage:
(a) a set of stereo SEM images of a Tapetal Cell with known tilting angle (9 degrees), (b)
result of sparse SIFT feature detection/description with a contrario RANSAC approach
for outlier removal, (c) set of rectified images with horizontal epipolar lines being demon-
strated, (d) bilateral filtered horizontal disparity map, (e) a magnified view of the high
quality surface mesh generated using the dense point cloud, and (f) a magnified view
of the high fidelity surface model. The proposed method is able to reconstruct the 3D
geometry of the microscopic sample with high accuracy.

using sparse SIFT features and employing a contrario RANSAC approach, dense corre-

spondence for vertical/horizontal disparity computation by use of dense SIFT features,

disparity refinement by taking advantage of a fast approximation variant of the bilateral

filtering and finally depth estimation. In Section 4.3, the results generated by the pro-

posed framework are presented with detailed comparisons with the state-of-the-art sparse

feature based approaches. Section 4.4 concludes the chapter.

4.2 Methods

The overview of the proposed method for high fidelity 3D reconstruction of microscopic

samples using a pair of stereo SEM images captured by tilting the sample surface by a
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known degree is shown in Figure 4.1. Here, stereo pair from a Tapetal Cell are used for

demonstration. After imaging the microscopic samples, the process begins by sparse fea-

ture detection/description using SIFT [120]. Using the detected features and employing

a contrario RANSAC approach, outliers are eliminated and the fundamental matrix is

approximated. This is later used for rectifying the input pair [66, 138]. The rectifica-

tion process will cause the displacements to be more concentrated along the horizontal

direction. Using the SIFT-Flow framework [116], dense correspondence is found for in-

dividual pixels between the rectified images. Since the SIFT-Flow can be considered to

be a labeling approach with a discrete set of labels, the outcome needs to be refined in

order to have smooth transitions between adjacent labels. To achieve this and also to

prevent over-smoothing in the regions with large gaps between disparities (e.g. variations

in the depth), an approximate fast bilateral filtering technique is employed [144]. The

smoothed horizontal disparity map is later used for depth approximation. In the following

subsections each of the steps are elaborated in more detail.

4.2.1 SEM Imaging Protocol

In this work, a Hitachi S-4800 field emission scanning electron microscope (FE-SEM) has

been utilized to generate the micrographs. This SEM is equipped with a computer con-

trolled 5 axis motorized specimen stage which enables movements in x, y and z directions

as well as tilt (-5 to 70◦) and rotation (0 to 360◦). Specimen manipulations, such as tilt,

z-positioning and rotation of the specimen stage, as well as image pre-processing and

capture functions were operated through the Hitachi PC-SEM software. The working

distance which gives the required depth of focus was determined at the maximum tilt

for every single sample at the magnification chosen for image capture. As the specimen

was tilted in successive 1◦ increments until reaching the final value through the software

application, the SEM image was centered by moving the stage in the x- and/or y-axes

manually. The micrographs were acquired with an accelerating voltage of 3 or 5 kV,

utilizing the signals from both the upper and lower SE detectors, as shown in Figure 4.2.

The magnification and working distance were held fixed in each captured image of the tilt
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Figure 4.2: SEM imaging procedure used for this study.

Table 4.1: Summary of the dataset used in this work. The micrographs are acquired
from Tapetal Cell, Copper Bar, Copper Grid, Hexagonal Grid and Pollen Grain using a
Hitachi S-4800 field emission scanning electron microscope (FE-SEM) with sizes ranging
from 512× 384 to 1280× 960 and tilt angles in the range 3− 11◦.

Tapetal Cell Copper Bar Copper Grid Hexagonal Grid Pollen Grain

Images

Size 1280× 960 512× 384 1280× 960 1280× 960 854× 640
Tilt Angle 9◦ 11◦ 7◦ 10◦ 3◦

series. Contrast and brightness were adjusted manually to keep consistency between SEM

micrographs. Table 4.1 summarizes the data that used in this work. Micrographs from

Tapetal Cell, Copper Bar, Copper Grid, Hexagonal Grid and Pollen Grain are considered

for evaluating the performance and accuracy of the proposed approach.

4.2.2 Scale Invariant Feature Transform (SIFT)

Four stages of feature detection/description involved in SIFT method can be summarized

as [120]: 1) scale-space extrema detection, 2) keypoint localization, 3) orientation assign-

ment and 4) keypoint descriptors. For the first step, a Gaussian function is considered
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as the scale-space kernel based on the work of [114]. By finding the scale-space extrema

in the response of the image to difference-of-Gaussian (DoG) masks, not only a good ap-

proximation for the scale-normalized Laplacian of Gaussian (LoG) function is provided,

but also as pointed out in the work of [129], the detected features are more stable. The

local extrema of the response of the image to the DoG masks of different scales is found

in a 3 × 3 × 3 neighborhood of the interest point. For accurate localization of the key-

points in the set of candidate keypoints, a three dimensional quadratic function is fitted

to the local sample points. By applying a threshold on the value of this fitting function

at the extremum, keypoints located in low contrast regions that are highly affected by

noise are eliminated. Moreover, thresholding the ratio of principal curvatures can also

eliminate poorly defined feature points near the edges. After finalizing the keypoints,

orientations can be assigned. This is done by using the gradients computed in the first

step of the algorithm when computing DoG responses. Creating a 36-bin histogram for

orientations in the keypoint’s neighborhood is the next step. Each neighbor contributes

to the histogram by a weight computed based on its gradient magnitude and also by a

Gaussian weighed circular window around the keypoint.

The final step is the local image descriptor generation. Using the location, scale and

orientation determined for each keypoint up until now, the local descriptor is created in

a manner which makes it invariant to differences in illumination and viewpoint. This is

done by combining the gradients at keypoint locations, as computed in the previous steps,

weighted by a Gaussian function over each 4 × 4 sub-region in a 16 × 16 neighborhood

around the keypoint into 8-bin histograms. This results in a 4×4×8 = 128 element vector

for each keypoint. Normalizing the feature vectors to unit length will reduce the effect

of linear illumination changes. This is usually followed by thresholding the normalized

vector and re-normalizing it again to reduce the effects of large gradient magnitudes.

In the current work, SIFT is used in two different ways. For the step of sparse

image matching required for epipolar rectification, the general SIFT approach is used for

locating the feature points and computing the corresponding descriptors. However for

the dense matching, feature detection is eliminated and SIFT descriptors are computed
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for all the pixels contained in the input images. For more information regarding the detail

and implementation of SIFT the reader is referred to [120].

4.2.3 Epipolar Rectification

Given a set of two SEM images of a microscopic sample captured from different view-

points, the epipolar rectification step attempts to transform the images in such a way

that we only have horizontal displacement (disparity) between the corresponding pixels

within the images. Assuming a set of sparse naively matched corresponding points gener-

ated by SIFT followed by a contrario RANSAC (ORSA) outlier removal algorithm [137]

and represented as 3-vectors of homogeneous coordinates for the left (Xl) and right (Xr)

images, the epipolar constraint can be written as [80]:

XT
l FXr = 0 (4.1)

where F is the fundamental matrix that captures the rigidity constraint of the scene.

Having a rectified pair, the fundamental matrix takes the especial form of:

F = [e1]× =


0 0 0

0 0 −1

0 1 0

 (4.2)

which means that the epipoles are at infinity in horizontal direction. Therefore, the

process of rectification involves finding homographies to be applied to the left and right

images to satisfy the epipolar constraint equation when F = [e1]×. This can be repre-

sented in a mathematical form as:

XT
l FXr = 0 ≡ (HlXl)

T [e1]×(HrXr) = 0 (4.3)

Having a rotation matrix R for the camera around the focus point, a homography
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matrix can be formulated as follows:

H = KRK−1 (4.4)

where K is the camera parameters matrix with (xc, yc) as the image center (principal

point) and f as the unknown focal length:

K =


f 0 xc

0 f yc

0 0 1

 (4.5)

Following the formulation proposed in [66, 138] we look for rotation matrices Rl and

Rr and focal length which satisfy:

E(xl, yl, xr, yr) = XT
l K

−TRT
l K

T [e1]×KRrK
−1Xr = 0 (4.6)

where Rr = Rz(θrz)Ry(θry)Rx(θrx), Rl = Rz(θlz)Ry(θly) and K = K(f = 3g(w + h)),

with w and h as the width and height of the input images respectively and g in the range

[−1, 1]. It should also be noted that due to the specific form of [e1]× all of the rotations

around the x direction are eliminated since Rt
x[e1]×Rx = [e1]×. Assuming the Sampson

error as:

E2
s = ET (JJT )−1E (4.7)

where J is the matrix of partial derivatives of E with respect to the 4 variables:

J = ((FXr)1 (FXr)2 (F TXl)1 (F TXl)2) (4.8)

we have

Es(Xl, Xr)
2 =

E(Xl, Xr)
2

||[e3]×F TXl||2 + ||[e3]×FXr||2
(4.9)

Utilizing Levenberg-Marquardt [141], the method seeks the parameters (θly, θlz, θrx, θry, θrz, g)

which minimize the sum of Sampson errors over the matching pairs. The optimized pa-
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rameters are then used for building the two homographies to be applied to the left and

right view images. More elaboration regarding the theory and implementation aspects of

the rectification method can be found in [66, 138].

4.2.4 SIFT-Flow for Dense Correspondence

Discontinuity preserving pixel/feature matching is a key component of many computer vi-

sion applications. This is unlike the many general purpose image registration approaches

in which the computed displacement maps are assumed too be smooth [16, 18]. In such

cases, even though the image grid is deformed during the process of registration, the

underlying geometry is considered as a whole, without the possibility of folding or over-

lapping. However, in computer vision applications, the objects that are contained in

the images are projective representations of the three dimensional objects in real world.

Therefore, the assumption of having discontinuity is necessary as a representation of the

difference in the relative distances of the objects to the camera. Here, the problem of

matching between image pixels is modeled as a dual-layer factor graph, with decoupled

components for horizontal/vertical flow to account for sliding motion. This model is

based on the work of [116] which takes advantage of an L1 truncated norm for achieving

discontinuity preservation and higher speeds in matching. Assuming F1 and F2 as two

dense multi-dimensional SIFT descriptor images, and p = (x, y) as the grid coordinates

of the image, the objective function to be minimized can be written as follows:

E(w) =
∑
p

min(||F1(p)− F2(p + w(p))||, t)+

∑
p

η(|u(p)|+ |v(p)|)+

∑
(p,q)∈ε

min(α|u(p)− u(q)|, d) +min(α|v(p)− v(q)|, d)

(4.10)

in which w(p) = (u(p), v(p)) is the flow vector at point p. The three summations in

this equation are data, small displacement and smoothness terms, respectively. The data

term is for minimizing the difference between the feature descriptors along the flow vector,
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p q p q

u v
u(p) or v(p) Smoothness term
Regularization term Data term

Figure 4.3: Factor graph representation of the energy minimization functional with de-
coupled horizontal and vertical components

while the small displacement term keeps the displacements as small as possible when no

information is available. Finally the smoothness term guaranties that the flow vectors for

neighbor pixels are similar. A few parameters that are used in this formulation are: t and

d as data and smoothness thresholds and α and η as small displacement and smoothness

coefficients, respectively. The values are set to the default values proposed by Liu et al.

[116].

As is obvious, in this formulation the horizontal and vertical components are de-

coupled. This is mainly for reducing the computational complexity. But this gives ad-

ditional benefit of being able to account for sliding motions during the process of image

matching. The objective function is formulated as a factor graph, with (p) and (q) as

the variable nodes while the factor nodes represent the data, small displacement and

smoothness terms. The flow is then extracted by using a dual-layer loopy belief propaga-

tion algorithm. Figure 4.3 shows the factor graph suggested by [116] for optimizing the

energy functional of dense matching problem. By using a coarse-to-fine (multi-resolution)

matching scheme, one is able to reduce the computational complexity and hence the com-

putation time while achieving lower values for the energy functional.

Belief propagation (BP) is a technique for exact inference of marginal probabilities for

singly connected distributions [21]. Generally speaking, each node in the graph computes

a belief based on the messages that it receives from its children and also from its parents.

Such a technique is purely local, which means that the updates are unaware of the global
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structure of the graph as the graph may contain loops and therefore be multiply connected

[148]. In this case, BP cannot compute an exact solution, but at best an approximation

which can be surprisingly very accurate [21]. Use of graphical models in image processing

tasks usually fall within the category of loopy graphs, which means different variants of

BP are used and studied for solving different problems in this area [184, 10].

In the general formulation of BP and subsequently loopy BP (LBP) [139], we assume

that node X computes its belief b(x) = P (X = x|E), where E is the observed evidence

that is computed by combining the messages from the node’s children λYj(x) and also

its parents πX(uk). Assuming λX(x) as the nodes’ message to itself representing the

evidence, we have:

b(x) = αλ(x)π(x) (4.11)

where:

λ(t)(x) = λX(x)
∏
j

λ
(t)
Yj

(x) (4.12)

and:

π(t)(x) =
∑
u

P (X = x|U = u)
∏
k

π
(t)
X (uk) (4.13)

The message that X passes to its parent Ui is given by:

λx(t+ 1)(ui) = α
∑
x

λ(t)(x)
∑
uk:k 6=i

P (x|u)
∏
k 6=i

πX(t)(uk) (4.14)

and the message that X sends to its child Yj is given by:

π
(t+1)
Yj

(x) = απ(t)(x)λX(x)
∏
k 6=j

λ
(t)
Yk

(x) (4.15)

As can be seen, if a message is being generated to pass from node A to B, the contribu-

tion of the message from node B to A from the previous iteration is eliminated. Also,

normalizing messages at each iteration doesn’t have any effect on the final beliefs and

has the benefit of preventing numerical underflow [148].

Factor graphs are a means of unifying the directed and undirected graphical models
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with the same representation [102]. Such graphs are derived by the main assumption

of representing complicated global functions of many variables by factorizing them as a

product of several local functions of subsets of variables. Generally speaking, a factor

graph can be defined as F = (G,P) in which G is the structure of the graph and P is the

parameter of the graph. G being a bipartite graph can be defined as G = ({X,F}, E)

where, X and F are variable nodes and factor nodes, respectively, while E is a set

of edges connecting a factor fi and a variable x ∈ Xj. Given evidence as a set of

variables with observed values, the process of belief propagation consists of passing local

messages between nodes in order to compute the marginal of all nodes. Even though

the same concept is used for belief propagation in directed graphs, here, the process can

be formulated as passing messages between variable and factor nodes. In this case, two

types of messages are passed: 1) message from variable node to factor node (µx→f ) and

2) message from factor node to variable node (µf→x):

µx→f (x) ∝
∏

h∈Nx\{f}

µh→x(x) (4.16)

µf→x(x) ∝
∑

Nf\{x}

(
f(Xf )

∏
y∈Nf\{x}

µy→f (y)
)

(4.17)

where x and y are variables, f and h are factors and Nf and Nx are representative

of neighbors of the corresponding nodes in the graph. In acyclic graphs, the process of

message passing is terminated after two messages are passed on every edge, one in each

direction. In such graphs, the process results in an exact inference. Unlike acyclic graphs,

belief propagation is done in an iterative manner in cyclic graphs. The process is termi-

nated when having minimal changes in the passed messages according to a predetermined

threshold and the result is considered an approximate inference.

Several modifications to the general formulation of the energy minimization procedure

is proposed by Liu et al. [116] which are also considered in this work. Different from the

general formulation of optical flow, here, the smoothness term is decoupled for allowing

separate horizontal and vertical flows. This reduces the computational complexity of the
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energy minimization significantly. In this implementation, at first, the intra-layer mes-

sages are updated for horizontal and vertical flows and then the inter -layer messages are

updated between horizontal and vertical flows. Moreover, sequential belief propagation

(BP-S) [184] is used for better convergence.

4.2.5 Disparity Refinement: Bilateral Filtering

Since the result of the previous step is in general a discrete labeling of the horizon-

tal/vertical disparity maps, neighbor pixels may have different labels. These differences

represent themselves as sudden jumps in the final 3D reconstruction results. One should

note that this is not always problematic especially in regions where sharp variations of

the disparity levels are representatives of edges and different depths. However, in uniform

regions these small variations in disparity values should be smoothed for a more visually

pleasing reconstruction result.

Bilateral filtering has been shown to provide high capability in noise/variation reduc-

tion while preserving edges contained in the images [145]. The general idea is similar

to simple Gaussian filtering. However, unlike the Gaussian filtering which only takes

the spatial proximity into consideration, bilateral filtering takes both spatial and range

information into account. Assuming the noisy image I, the general formulation for the

bilateral filtered result Î at pixel location p is:

Îp =
1

Wp

∑
q∈S

Gσs(||p− q||) Gσr(|Ip − Iq|)Iq (4.18)

with the normalization factor defined as Wp =
∑

p∈S Gσs(||p − q||) Gσr(|Ip − Iq|), q is

the neighbor pixel in the neighborhood S and Gσs and Gσr are the Gaussian weighting

functions for spatial and range data, respectively. Direct implementation of the bilateral

filter is computationally expensive and therefore, several approximation techniques have

been proposed in the literature for speeding up the process [197, 152, 50, 144]. Here, the

approximation method proposed by Paris and Durand [144] is used. In their formulation,

the image is first converted to a volumetric bilateral grid with homogeneous values. It
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Figure 4.4: Effects of various spatial (σs = {1, 3, 5}, from left to right) and range (σr =
{1, 3, 5}, from top to bottom) variance for bilateral filtering of the disparity of Pollen
Grain. The difference map between the initial disparity map and the refined map are
also presented.

is shown that the bilateral filter can be approximate by Gaussian convolution applied to

the grid followed by sampling and normalization of the homogeneous values. The spatial

(σs) and range (σr) variation parameters are chosen experimentally. Figure 4.4 displays

the effects of different values for the parameters in the smoothness of the computed

horizontal disparity map for the Pollen Grain. We aim to smooth the minimal variations

in uniform regions while preserving sudden jumps in disparity values associated with

bigger differences in the depth. Looking closely at the various spatial and range variances

shown in Figure 4.4, it is obvious that bigger values of variances cause the disparity map

to be over-smoothed. This can be seen in the corresponding difference maps as more

edge details can be seen which indicate that more edge information are smoothed out.

To eliminate this and still having a reasonable smoothing effect, the values of σs and σr

are both set to 3, experimentally for creating the results presented here.

4.2.6 Depth Estimation

As mentioned before, stereo rectification transforms the images in a manner in which

the displacements will be grossly concentrated in the horizontal direction. This greatly

simplifies the process of depth estimation. This is especially useful for the case of 3D

reconstruction of SEM images since the tilt angles are very small with high amount of

overlap between stereo image pairs. For more general problems like large scale multiple
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Plane No.1

Plane No.2

Optic Axis

Image Plane

θ

h

d

h = d.p

2 sin(θ2)

Figure 4.5: Relationship between the estimated height (h) and the computed horizontal
disparity (d) using the pixel size in sample units (p) and the total tilt angle (θ).

view stereo (MVS), the proposed technique is not directly applicable and more sophisti-

cated methods are needed [176, 190, 65].

The horizontal disparity computed from the previous step, can be utilized for esti-

mating the depth of the individual pixels contained in the images. This requires that

several parameters to be known: tilt angle, magnification and size of each pixel in sample

units. Figure 4.5 shows the relationship between the computed horizontal disparity and

the height for a few sample points. This can be represented using a simple trigonometric

equation [163, 183, 203]:

h =
d.p

2 sin( θ
2
)

(4.19)

which uses the computed horizontal disparity d, pixel size in sample units (p) and the

total tilt angle (θ) to estimate the height (h).

4.3 Results & Discussions

Assessing the performance of proposed framework which consists of several steps is done

using the several sets of SEM images (Tapetal Cell, Copper Bar, Copper Grid, Hexago-

nal Grid, Pollen Grain) captured by a Hitachi S-4800 field emission scanning electron

microscope (FE-SEM), equipped with a computer controlled 5 axis motorized specimen

stage which enables movements in x, y and z directions as well as tilt (-5 to 70◦) and
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rotation (0 to 360◦) [189]. As the specimen was tilted in successive 1◦ increments, the

SEM image was centered by moving the stage in the x- and/or y-axes manually. One

should note that this does not have any effect on the relative disparity and subsequent

estimated depth variations between pixels of the images and may only cause the average

disparity to be elevated or lowered. The micrographs were acquired with an accelerating

voltage of 3 or 5 kV, utilizing the signals from both the upper and lower SE detectors, as

shown in Figure 4.2.

As the first step, sparse SIFT features/descriptors are located following the approach

outlined in Section 4.2.2. This step is straightforward and no optimization is taken

in order to increase/decrease the number of features. This step is followed by sparse

feature matching implemented by employing a contrario RANSAC to ensure better outlier

removal. Epipolar rectification for finding the appropriate homography transforms for the

input micrographs in order to have more horizontally concentrated disparity maps is next.

Table 5.2 summarizes the results of sparse SIFT matching and the subsequent epipolar

rectification for all of the micrograph sets. The first and second row in the table indicate

the number of SIFT features found in the first and second micrographs of each set. As can

be seen, the number of detected features is minuscule in comparison to the total number

of pixels contained within the images. This number is further reduced after finding the

corresponding matches (see third row in Table 5.2). However, it should be noted that

these features are not used for 3D reconstruction of the microscopic samples and while

having small number of SIFT features can be problematic in the case of sparse feature

based reconstruction, here, it does not have a negative impact. In fact, having only eight

true matches is enough for estimating the fundamental matrix which captures the rigidity

constraint of the scene [81, 136, 66]. The computed homography transforms for the first

and second micrographs are displayed in the table as well. This is followed by initial and

final Sampson rectification errors. As expected, since the SEM micrographs are captured

in a very controlled manner, rectification errors are not very large to begin with. However,

epipolar rectification is recommended to ensure minimal operator introduced errors as a

result of manual manipulation of the specimen stage. This will guaranty truthful three
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Initial Difference Maps

Graphs of Dense Energy Minimization

Final Difference Maps

1

Figure 4.6: Dense matching results for the rectified image sets: Tapetal Cell (column
1), Copper Bar (column 2), Copper Grid (column 3), Hexagonal Grid (column 4) and
Pollen Grain (column 5). The first row shows the initial difference map. The second
row shows the minimization trend for the optimization process defined using dense SIFT
descriptors, factor graph representation of the energy functional to be optimized (Figure
4.3) and loopy belief propagation as means of optimization. The third row displays the
difference maps after the optimization process.

dimensional reconstruction of the underlying microscopic sample.

As for the performance of dense correspondence step, Figure 4.6 summarizes the

results for the five used micrograph sets, visually. First row shows the difference maps

between the two rectified input images before the process of dense matching, while the

third row displays the difference maps after the process using dense SIFT descriptors and

loopy belief propagation for minimizing the defined energy functional. The minimization

process is implemented in a multi-resolution manner in three distinct stages, as can be

seen from the second row of Figure 4.6. In such case, the aim is to recover the larger

displacements in a coarser grid while compensating the smaller displacements in a finer

grid. The multi-resolution implementation not only can reduce the computational time

and complexity significantly. But also, it makes the recovery of true correspondence, in

case of having bigger disparities, more achievable. The graphs are representatives of the

optimization trend of the dense energy functional.

Table 4.3 summarizes the results of dense correspondence numerically. Here, the root

84



www.manaraa.com

Table 4.3: Summary of dense correspondence results using dense SIFT features, the factor
graph representation of the objective function and loopy belief propagation as meas for
optimization. The first and second row represent the initial and final root mean squared
error (RMSE) of the two input micrographs. The residual errors can be attributed to the
noise contained in the micrographs as well as the differences in brightness due to edge
effects caused by imaging in the secondary electron (SE) mode. third and fourth rows
show the initial and final values of the objective function (note the coefficients ×109 and
×107). The fifth row shows the ratio between the energy contained in the vertical disparity
map and the energy contained in the horizontal disparity map. This provides additional
proof for the efficiency of the rectification process as well as the depth estimation step.
The last row displays the computational time needed for finding the dense correspondence
between input micrographs.

Tapetal Cell Copper Bar Copper Grid Hexagonal Grid Pollen Grain

RMSEinitial 44.67 43.38 19.42 31.42 23.20
RMSEfinal 25.26 17.50 8.50 12.18 7.34
Einitial (×109) 2.29 0.20 1.68 1.79 0.73
Efinal (×107) 4.20 0.44 3.28 3.60 1.59∑

v2∑
u2 (%) 1.29 0.20 0.08 0.16 0.58

≈ Elapsed time (s) 44.65 7.50 47.10 47.33 19.60

mean squared error (RMSE) is used as means for assessing the performance of dense

matching. The first row in the table is a representative of the initial RMSE while the

second row shows the final RMSE. The error is reduced significantly. The residual error

can be attributed to the noise contained in the micrographs as well as the differences in

brightness in regions due to changing the tilt angel between each image acquisition. Using

SEM in the secondary electron (SE) imaging mode, the contrast is mainly dominated by

edge effects. This is due to having more secondary electrons that can leave the sample

near edges which results in increased brightness. A close inspection of the difference

maps provided in the third row of Figure 4.6 reveals that while the difference in non-edge

regions is minimal, an increase in the difference can be seen near edges. Fortunately,

SIFT is designed in such a way to be able to handle these subtle intensity variations.

Therefore this does not have any impacts on the outcome of dense matching process.

Initial and optimized values of the energy functional in Equation (4.10) can be seen in

the third and fourth rows of the table. Using the factor graph representation of the

objective function and loopy belief propagation as means for optimization, the energy is

minimized by orders of magnitude. One of the assumptions in simplifying the process of
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depth estimation and 3D point cloud generation was based on the observation that energy

of vertical disparity map is minuscule in comparison to the energy of horizontal disparity

map. This was expected as a result of the sparse feature-based rectification step. More

evidence is presented in the fifth row of the table which reveals that the amount of energy

contained in the vertical disparity map is in fact very small in comparison to the energy of

horizontal disparity map. It should be noted that in case of having larger displacements

between corresponding pixels of the initial micrographs, the ratio may increase due to the

local nature of belief propagation minimization approach. This is the case of Tapetal Cell

set where the ratio is larger compared to the rest. Of course, this is still very small to

have a major negative impact of the outcome of depth estimation step. Finally, the last

row, shows the computation time needed for dense matching between the micrographs

in each set. The codes implemented here were a combination of MATLAB and MEX

codes executed on a Core i7 CPU @ 3.50 GHz with 12 GB or RAM using MS Windows

7 and MATLAB R2014b. As can be seen, the size of the input micrographs dominate

the overall computational need of the proposed dense matching approach. The step is

followed by disparity refinement using the approximate bilateral filer discussed in Section

4.2.5.

Having the refined relative disparities and the tilt angle, depth can be estimated using

Equation (4.19) and the three dimensional point cloud can be generated. Figures 4.7,

4.8, 4.9 and 4.10 show the results of the proposed method for the Copper Bar, Copper

Grid, Hexagonal Grid and Pollen Grain image sets, respectively. In each figure, the first

row shows several views of the generated dense point cloud (with sub-sampling for better

visualization) for each pair of input images. The second row represents several views of

the generated high quality surface mesh while the third row shows a magnified view of

the generated surface mesh. Using the proposed approach, a high fidelity reconstruction

of the microscopic samples is possible. Additionally, a uniform surface mesh can be

generated since the distribution of the three dimensional points is uniform within the

domain. This is one of the major advantages of using dense correspondence for 3D

surface reconstruction in comparison to sparse feature based reconstruction approaches.
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Moreover, higher amount of detail can be reconstructed employing the proposed sparse-

dense methodology.

Sparse feature-based techniques rely only on the features detected in the images for the

purpose of reconstruction [186, 187]. These features are not distributed uniformly within

the image domain by default. This is especially more challenging in the regions that lack

significant variations in intensity/depth and therefore, are rather flat and uniform. It

should also be noted that feature detection techniques, like the ones employed in SIFT,

are designed to ignore spatially close or features generated by edges. For the general

problem of image matching, this is extremely useful since it helps avoiding computational

redundancy and possible effects of noise. However, for surface reconstruction of SEM

images, this will lead to erroneous results. For a better representation of the arguments,

Figure 4.11 provides a visual comparison between the reconstruction results using the

proposed approach and the state-of-the-art sparse feature based approaches presented

in [188, 187]. The results are generated for the Tapetal Cell (column 1), Copper Bar

(column 2), Copper Grid (column 3), Hexagonal Grid (column 4) and Pollen Grain

(column 5), respectively. As can be seen, sparse feature based approaches suffer from non-

uniform surface meshes generated while sharp edges and small features are not truthfully

recovered. It should be noted that for the proposed approach, only two micrographs are

used while for the sparse feature based reconstruction, five micrographs from different

viewpoints are utilized. This is mainly to ensure sufficient matching points between image

pairs for being able to build a more truthful reconstruction. Therefore, even though these

approaches are proven to be useful in general purpose scene reconstruction applications,

since they are not designed for feature detection of SEM images, they achieve limited

performance. A closer inspection can provide a more elaborate comparison between the

results generated using the two approaches. For the Tapetal Cell, as previously shown in

Figure 4.1 (e, f), a small dent can be observed in the middle of the cell structure. While

the two approaches provide a rather similar geometry for the cell, only the proposed

sparse-dense approach can reconstruct the very fine detail. The adverse effect of non-

uniform distribution of feature points can be seen in the results produced using the Copper
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Bar set. Not only did this result in a non-uniform triangulation of the surface, but it also

caused the bar’s edges to be overly smoothed and deviate from a straight line. Sparsity of

the feature points may cause the subsequent mesh general to be prone to over smoothing

too. This is the case for the portion of Copper Grid shown in the third column. Even

though this is the consequence of meshing software, however, it is a direct outcome of

the three dimensional point cloud generation using sparse features. On the other hand,

in the proposed sparse-dense framework, the edges are reconstructed with high accuracy.

Moreover, minimal depth variations in the underlying carbon layer underneath the grid

is revealed. For the case of Hexagonal Grid, not only the produced mesh is not uniform,

but also identical areas are not reconstructed properly. This is obvious in the case of

Pollen Grain due to higher levels of detail presented in the micrograph set. The sparse

feature based approach provides a rather smooth surface, with minimal representation of

the porous structure while the proposed approach is able to generate a detail-rich three

dimensional surface. Overall, the performance of the proposed approach is superior to

the state-of-the-art feature based reconstruction.

4.4 Conclusion

In this chapter, an end-to-end framework for high fidelity 3D reconstruction of micro-

scopic samples from stereo SEM micrographs is proposed. Using a Hitachi S-4800 field

emission scanning electron microscope (FE-SEM) which is equipped with a computer

controlled 5 axis motorized specimen stage which enables movements in x, y and z di-

rections as well as tilt and rotation, the specimen was tilted in successive 1◦ increments

until reaching the final desired tilt angle with manual movement of the stage in the x-

and/or y directions. Even with the most careful acquisition procedure, the acquired im-

ages need to be transformed in manner to ensure more accurate 3D reconstruction. In

this step, using sparse SIFT features/descriptors and employing a contrario RANSAC,

matched features are found and outliers that do not satisfy a projective transform are

removed. This followed by an stage of rectification for transforming the images to having
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SEM Two-View Images

Dense Point Cloud

Triangular Surface Mesh

Magnified View

Figure 4.7: Qualitative visualization of the proposed 3D SEM reconstruction framework
for the Copper Bar sample images, acquired by tilting the sample stage by 11 degrees.
The set of two-view images can be seen in Table 5.1. Second row displays several views
of the reconstructed dense point cloud. The initial cloud contains 196608 points which
is sub-sampled here for better visualization. Third row shows the constructed triangular
surface mesh. Fourth row depicts a magnified view of the constructed triangular sur-
face mesh. Considering the proposed dense correspondence framework, a highly uniform
reconstruction of the curved surface is achieved.
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SEM Two-View Images

Dense Point Cloud

Triangular Surface Mesh

Magnified View

Figure 4.8: Qualitative visualization of the proposed 3D SEM reconstruction framework
for the Copper Grid sample images, acquired by tilting the sample stage by 7 degrees.
The set of two-view images can be seen in Table 5.1. Second row displays several views
of the reconstructed dense point cloud. The initial cloud contains 1228800 points which
is sub-sampled here for better visualization. Third row shows the constructed triangular
surface mesh. Fourth row depicts a magnified view of the constructed triangular sur-
face mesh. Considering the proposed dense correspondence framework, a highly uniform
reconstruction of the curved surface is achieved.
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SEM Two-View Images

Dense Point Cloud

Triangular Surface Mesh

Magnified View

Figure 4.9: Qualitative visualization of the proposed 3D SEM reconstruction framework
for the Hexagonal Grid sample images, acquired by tilting the sample stage by 10 degrees.
The set of two-view images can be seen in Table 5.1. Second row displays several views
of the reconstructed dense point cloud. The initial cloud contains 1228800 points which
is sub-sampled here for better visualization. Third row shows the constructed triangular
surface mesh. Fourth row depicts a magnified view of the constructed triangular sur-
face mesh. Considering the proposed dense correspondence framework, a highly uniform
reconstruction of the curved surface is achieved.
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SEM Two-View Images

Dense Point Cloud

Triangular Surface Mesh

Magnified View

Figure 4.10: Qualitative visualization of the proposed 3D SEM reconstruction framework
for the Pollen Grain sample images, acquired by tilting the sample stage by 3 degrees.
The set of two-view images can be seen in Table 5.1. Second row displays several views
of the reconstructed dense point cloud. The initial cloud contains 447665 points which
is sub-sampled here for better visualization. Third row shows the constructed triangular
surface mesh. Fourth row depicts a magnified view of the constructed triangular sur-
face mesh. Considering the proposed dense correspondence framework, a highly uniform
reconstruction of the curved surface is achieved.
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a more horizontally-concentrated disparity. In this manner, given the correct disparity,

the process of depth estimation will be simplified greatly since the depth will be directly

proportional to the found disparity. For the next step, we take advantage of a constrained

optimization procedure using dense SIFT descriptors, factor graph representation of the

energy functional to be optimized and loopy belief propagation as means of optimization.

Finally, depth is estimated using the bilaterally-filtered horizontal disparity computed

from the previous step. Extensive tests and experiments with several sets of SEM micro-

graphs prove the robustness and reliability of the proposed method for high resolution

quality 3D reconstruction of microscopic samples. In the next chapter the problem of

3D surface reconstruction for highly complex microscopic samples is discussed and the

current framework is improved.
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Chapter 5

3D Reconstruction of Highly Complex Microscopic

Samples Using Non-Local Optical Flow Estimation

5.1 Introduction

Scanning electron microscope (SEM) is one the principal research and industrial equip-

ment for imaging on the microscopic scale. SEM and its diverse applications have been

a very active research over the recent decade, and scientific studies well covered the use

of SEM in broad domains ranging from biomedical applications to materials sciences and

nano technologies [196, 218, 27, 6, 180, 195, 96]. SEM as an advanced microscopy device

produces high quality images of microscopic specimen using a focused beam of electrons

which can be then captured by two types of detectors, secondary electron (SE) and back-

scattered electron (BSE) detectors, to provide both compositional and/or geometrical

information [51]. However, SEM micrographs remain 2D while the need for having a

more quantitative knowledge of the 3D shape/surface of the microscopic samples is of

high importance. The vast literature of used techniques for this purpose can be cate-

gorized into three major classes: a) single-view, b) multi-view, and c) hybrid strategies

[188]. In single-view approaches, using varying lighting (electron beam) directions on

a single perspective, a group of 2D SEM micrographs are captured and utilized for 3D

SEM surface modeling. In multi-view strategies, on the other hand, a set of 2D SEM

images from different perspectives assists the 3D SEM surface reconstruction process.

While each technology carries its own cons and pros, the hybrid mechanisms try to com-

bine single-view and multi-view algorithms to restore a 3D shape model from 2D SEM

images.

The use of single-view algorithms and its application to 3D SEM surface reconstruction
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have been well studied in the literature. The Photometric Stereo (PS) [201] as the major

strategy in this class tries to estimate the surface normal vectors of the microscopic sample

by observing the object being illuminated from different directions. Paluszynski et al.

[143] designed a single-view 3D surface modeling approach based on the PS algorithm

which also incorporates advanced signal processing algorithms along with both SE and

BSE detectors to restore the 3D shape model of SEM images. Pintus et al. [153] developed

an automatic alignment strategy for a four-source PS technique for reconstructing the

depth map of SEM specimen. Kodama et al. [98] designed a genetic algorithm to tackle

the topographical surface reconstruction problem of SEM based on PS method. The

proposed genetic algorithm has been applied to the line profile reconstruction from the

signals captured by both SE and BSE detectors. Vynnyk et al. [194] proposed a PS based

algorithm to 3D SEM surface reconstruction and studied the efficiency of SEM detector

system towards a 3D modeling. Slowko et al. [177] designed a PS-based algorithm to

reconstruct the 3D surface model of SEM micrographs with the use of angular distribution

of back-scattered electron emission to achieve a digital map of surface elevations. This

contribution examined different SEM environmental conditions as a high vacuum SEM

which was equipped with the BSE detector system utilized for 3D surface reconstruction.

One of the most promising class of methods for 3D surface modeling of SEM im-

ages has been the multi-view class which is based on acquisition of multiple images

from different perspectives. The Structure from Motion (SfM) [99, 56] and Stereo Vi-

sion [3, 126, 125] algorithms are advanced visual computational methods which take into

account pixels/feature-points matching to assist for accurate 3D SEM surface reconstruc-

tion. The class of multi-view 3D reconstruction approaches can be categorized into two

major classes: a) sparse feature-based approaches and b) dense pixel based approaches.

While methods from the first class are employed to establish a set of robust matches

between an image pair or a set of images based on sparsely placed distinct feature-points,

dense multi-view techniques try to discover matches for all points in the images. These

matches along with other computational methods will then be used to accurately esti-

mate the projective geometry and 3D surface models [80]. Raspanti et al. [159] presented
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a high resolution dense multi-view method for 3D reconstructions of biological samples

obtained by a SEM. The work implemented novel solutions including a neural adaptive

points matching technique to tackle the problem of dense 3D reconstruction. Samak et al.

[167] developed a SfM-based algorithm to restore 3D surface model of SEM micrographs.

The proposed method initialized a set of 3D points from 2D corresponding points and

then triangulated the obtained 3D points into the 3D surface mesh with a mapped texture

on the shape model. Carli et al. [39] evaluated the uncertainty of stereo vision algorithm

for the problem of 3D SEM surface modeling. Uncertainty for different cases of tilt and

rotation were discussed in the work and a relative uncertainty equal to 5% and 4% was

achieved for the case of rotation and tilt respectively. Zolotukhin et al. [220] studied

the pros and cons of SfM algorithm focusing on two-view 3D SEM surface reconstruction

problem. Tafti et al. [188, 185] reviewed the state of the art 3D SEM surface reconstruc-

tion solutions, addressing several enhancements for the research study, and developed

a sparse mutli-view algorithm to tackle 3D SEM surface modeling problem. Using ma-

chine learning solutions and adaptive strategies, Tafti et al. [187] proposed an improved

sparse feature-based multi-view method which outperforms their earlier work in terms of

accuracy and computation demands. SEM as an advanced imaging equipment requires

careful modification/configuration of internal parameters for 3D reconstruction solutions.

Marinello et al. [124] analyzed and studied the 3D reconstruction of SEM images based

on different instrumental configurations including calibration, title-angle, magnification

and etc. Applications of such sparse/dense matching based techniques can also be found

in the works of Mona et al. [52] and Limandri et al. [112], Woo Kim [96] and Gontard

et al. [70]. Inspired by the above-mentioned approaches, attempts in devising hybrid

approaches to combine single-view and multi-view algorithms for restoring the 3D shape

model of a microscopic sample have been attempted [45].

In single-view 3D surface reconstruction, creating a full model of the microscopic

sample is not possible since the images are limited to only one view-point. Moreover,

recreating the SEM micrographs of the sample under different illumination conditions is

difficult. On the other hand, multi-view approaches offer a more general and achievable
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framework for the task. However, use of sparse-feature based approach results in blurred

edges and smoothed surfaces. This is especially problematic for the very complex micro-

scopic samples, similar to the ones considered here. This requires more advanced match-

ing techniques to capture the very fine details which are missed otherwise, when using

sparse feature-based approaches. With the advent of new computer vision-based match-

ing techniques, more accurate and robust approaches can be developed for the problem

of 3D surface reconstruction of microscopic samples. In this work, a novel methodology

is introduced for high quality 3D reconstruction of microscopic samples using multi-view

SEM images. This is to address the growing demand for more accurate reconstruction

techniques in fields like biology where the level of complexity of samples is very high.

Using the proposed approach, high quality surface meshes of highly complex microscopic

samples can be generated which can be used for further quantitative analysis of the sur-

face/shape attributes. The contributions of the current chapter can be summarized as

follows:

1. The current chapter introduces and investigates a new optimized and robust ap-

proach for dense matching and high quality reconstruction of highly complex mi-

croscopic samples from sets of multi-view SEM micrographs. Here, a complete

framework is proposed in a step-by-step fashion; from image acquisition to pre-

processing to dense matching to depth estimation and finally mesh processing and

3D printing.

2. Taking advantage of non-local nature of median filtering, higher accuracy in finding

dense matching points are achieved which results in a more truthful reconstruction

of 3D surface. Moreover, additional step of weighted median filtering by use of the

corresponding micrographs as guidance is proven to reduce the blurring effects near

edges and boundaries of the objects.

3. Having a physical model can be beneficial in order to achieve a more realistic rep-

resentation of the microscopic samples. Therefore, 3D printing of the reconstructed

3D models are considered here. This is to showcase the superior performance of the
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proposed method in recovering very fine details as well as to provide the means for

better understanding of the morphology of the samples.

The rest of the chapter is organized as follows. Section 5.2 contains detailed expla-

nations of the techniques proposed in this work. Following a brief overview, the SEM

imaging protocol is described. After discussing the pre-processing steps of sparse scale

invariant feature transform (SIFT) and epipolar rectification, the method of optical flow

estimation with non-local regularization is introduced. As for post-processing of the dense

matching results, image guided weighted median filtering is introduced next. The sec-

tion concludes with true depth estimation using the filtered dense matching results. In

Section 5.3, the results generated by the proposed framework are presented with detailed

comparisons with the state-of-the-art. Section 5.4 concludes the chapter.

5.2 Methods

5.2.1 Overview

The overview of the proposed work for high quality 3D reconstruction of complex micro-

scopic samples is similar to what is proposed in the previous chapter with few modification

to make is more suitable for dealing with microscopic sample with higher complexity. The

multi-view micrographs are captured by using a SEM device with computer controlled

specimen stage. From each sample, two micrographs are acquired. Epipolar rectifica-

tion using sparse SIFT features are done next to ensure a more horizontally-concentrated

disparity variations between pixels of the micrographs. This is followed by dense corre-

spondence between the pixels using optical flow estimation which provides the one-to-one

correspondence between the matching points of the two micrographs. Even though the

optical flow estimation method employed here is of high accuracy, high amount of detail

contained in the used micrographs may have a negative effect on the outcome. This can

be greatly remedied by weighted median filtering which takes advantage of the original

micrographs as guidance for filtering the computed disparity map. Finally, the filtered
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disparity map is used for high fidelity 3D reconstruction. In the following subsections

each of the steps are elaborated in more detail.

5.2.2 SEM Imaging Protocol

In this work, a Hitachi S-4800 field emission scanning electron microscope (FE-SEM) has

been utilized to generate the micrographs. This SEM is equipped with a computer con-

trolled 5 axis motorized specimen stage which enables movements in x, y and z directions

as well as tilt (-5 to 70◦) and rotation (0 to 360◦). Specimen manipulations, such as tilt,

z-positioning and rotation of the specimen stage, as well as image pre-processing and

capture functions were operated through the Hitachi PC-SEM software. The working

distance which gives the required depth of focus was determined at the maximum tilt

for every single sample at the magnification chosen for image capture. As the specimen

was tilted in successive 1◦ increments until reaching the final value through the software

application, the SEM image was centered by moving the stage in the x- and/or y-axes

manually. The micrographs were acquired with an accelerating voltage of 3 or 5 kV,

utilizing the signals from both the upper and lower SE detectors, as shown in Figure 5.1.

The magnification and working distance were held fixed in each captured image of the

tilt series. Contrast and brightness were adjusted manually to keep consistency between

SEM micrographs. Table 5.1 summarizes the data that used in this work. Micrographs

from Arabidopsis Anther 1, Arabidopsis Anther 2, Graphene, Pseudoscorpion and Ash

are considered for evaluating the performance and accuracy of the proposed approach.

5.2.3 SIFT Feature Detection/Matching and Epipolar Rectifi-

cation

The four stages of feature detection/description involved in SIFT method can be summa-

rized as [120]: 1) scale-space extrema detection, 2) keypoint localization, 3) orientation

assignment and 4) keypoint descriptors. For the first step, a Gaussian function is con-

sidered as the scale-space kernel. The local extrema of the response of the image to the

difference-of-Gaussian (DoG) masks of different scales is found in a 3 × 3 × 3 neighbor-
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Figure 5.1: SEM imaging procedure used for this study.

Table 5.1: Dataset acquired using a Hitachi S-4800 field emission scanning electron mi-
croscope (FE-SEM) by tilting the specimen stage by 7◦. The images for Pseudoscorpion
set are rotated by 90◦ for visualization purposes.

Arabidopsis Anther 1 Arabidopsis Anther 2 Graphene Pseudoscorpion Ash

Images

Size 1280× 960 1280× 960 1280× 960 1280× 960 926× 924
Tilt Angle 7◦ 7◦ 7◦ 7◦ 7◦

hood of the interest point. After several stages of processing for removing the poorly

defined keypoints in low contrast regions and near edges using quadratic function fitting

and thresholding, the corresponding orientations can be assigned to the keypoints. This

is followed by creating a 36-bin histogram for orientations in the keypoint’s neighborhood

by considering contributions from each neighbor, weighted based on their gradient mag-

nitude and also by a Gaussian-weighed circular window around the keypoint. Using the

location, scale and orientation determined for each keypoint up until now, the keypoint’s

descriptor is computed by combining the gradients at keypoint locations, as computed in

the previous steps, weighted by a Gaussian function over each 4×4 sub-region in a 16×16

neighborhood around the keypoint into 8-bin histograms. This results in a 4×4×8 = 128
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element vector for each keypoint.

Given a set of two SEM images of a microscopic sample captured by titling the

specimen stage, the epipolar rectification step aims to transform the images to only have

horizontal displacements (disparity) between the corresponding pixels within the images.

Assuming a set of sparse naively-matched (using nearest neighbors (NN) algorithm) SIFT

feature points followed by a contrario RANSAC (ORSA) outlier removal algorithm [137]

and represented as 3-vectors of homogeneous coordinates for the left (Xl) and right (Xr)

images, the epipolar constraint can be written as [80]:

XT
l FXr = 0 (5.1)

where F is the fundamental matrix that captures the rigidity constraint of the scene.

Having a rectified pair, the fundamental matrix takes the especial form of:

F = [e1]× =


0 0 0

0 0 −1

0 1 0

 (5.2)

which means that the epipoles are at infinity in horizontal direction. Therefore, the

process of rectification involves finding homographies to be applied to the left and right

images to satisfy the epipolar constraint equation when F = [e1]×:

XT
l FXr = 0 ≡ (HlXl)

T [e1]×(HrXr) = 0 (5.3)

Having a rotation matrix R for the camera around the focus point, a homography

matrix can be formulated as H = KRK−1 where K is the camera parameters matrix

with (xc, yc) as the image center (principal point) and f as the unknown focal length:

K = [f 0 xc; 0 f yc; 0 0 1]. Following the formulation proposed in [66, 138] we look for

rotation matrices Rl and Rr and focal length which satisfy:

E(xl, yl, xr, yr) = XT
l K

−TRT
l K

T [e1]×KRrK
−1Xr = 0 (5.4)
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where Rr = Rz(θrz)Ry(θry)Rx(θrx), Rl = Rz(θlz)Ry(θly) and K = K(f = 3g(w + h)),

with w and h as the width and height of the input images respectively and g in the range

[−1, 1]. It should also be noted that due to the specific form of [e1]× all of the rotations

around the x direction are eliminated since Rt
x[e1]×Rx = [e1]×. Assuming the Sampson’s

error as:

E2
s = ET (JJT )−1E (5.5)

where J is the matrix of partial derivatives of E with respect to the 4 variables:

J = ((FXr)1 (FXr)2 (F TXl)1 (F TXl)2) (5.6)

we have

Es(Xl, Xr)
2 =

E(Xl, Xr)
2

||[e3]×F TXl||2 + ||[e3]×FXr||2
(5.7)

Utilizing Levenberg-Marquardt [141], the method seeks the parameters (θly, θlz, θrx, θry, θrz, g)

which minimize the sum of Sampson errors over the matching pairs. The optimized pa-

rameters are then used for building the two homographies to be applied to the left and

right view images. More elaboration regarding the theory and implementation aspects of

the rectification method can be found in [66, 138].

5.2.4 Dense Matching by Optical Flow Estimation

Finding a dense matching map between individual pixels of the input SEM micrographs

is of high importance for high quality depth estimation and point cloud generation. One

should note that the images are captured of rigid objects, with the only change being in

the viewpoint angle. The rigidity of the microscopic samples, then, should be preserved

in the dense correspondence maps that are found. This is generally satisfied since the

imaged objects are well-textured which makes the process of matching more robust. On

the other hand, edges/discontinuities contained in the micrographs should be preserved.

This is mainly necessary for distinguishing different regions of more complex microscopic

samples, similar to that of considered here (refer to Table 5.1). Being able to preserve the
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discontinuities benefits the depth estimation greatly. However, the correspondence maps

found should be piece-wise smooth which is usually satisfied in the formulation of energy

functional required for matching. For the current work, dense matching is achieved using

high quality optical flow estimation.

Optical flow estimation introduced by [85] refers to the estimation of displacements

of intensity patterns in image sequences ([62], [11]). Generally speaking, the problem can

be formulated as a global energy optimization problem of the form EGlobal = EData +

λEPrior where the data term, EData, measures the consistency of the optical flow for

the input images and the prior term, EPrior, applies additional constraints for having

a specific property for the flow field, for example smoothly varying flow fields. The

choice of each term in the global energy functional and also the optimization algorithms

varies in different methods for optical flow estimation. Assuming a two-frame (I1 and I2)

formulation, the objective function can be written as:

E(u,v) =
∑
i,j

{pD(I1(i, j)− I2(i+ ui,j, j + vi,j))

+ λ[pS(ui,j − ui+1,j) + pS(ui,j − ui,j+1) + pS(vi,j − vi+1,j) + pS(vi,j − vi,j+1)]}

(5.8)

with u and v as the horizontal and vertical components of the flow field, i, j as the pixel

indexes, λ as the regularization parameter and finally, pD and pS as the data and spatial

prior penalty functions, respectively. In the original work of [85] quadratic functions are

used for both the data and spatial penalty functions. But in the literature examples of

using Charbonnier (p(x) =
√
x2 + ε2)) in the work of [34] and Lorentzian (p(x) = log(1 +

x2

2σ2 )) in the work of [28] penalty functions and their variants can be found which provide

a more robust estimation of the underlying flow fields. To account for large displacements

between frames, the above formulation is usually minimized in a multi-resolution manner

using incremental pyramid schemes, with steps of Gaussian anti-aliasing and flow outlier

removal filters between iterations. This helps the process of linearization of the objective
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function manageable and ensures lower chances of being trapped in local optima. As

thoroughly discussed in [182], median filtering of the optical flow estimates after each

pyramid level has a big impact in the final outcome of the minimization process: while

the final energy is higher than what is achieved without median filtering, the optical

flow error is minimized. This is due to the non-local nature of median filtering which is

different from the local pairwise smoothness term. Incorporating the non-local median

filtering heuristic as a weighted term in the energy functional can be considered as a

means for ensuring minimal over-smoothing across boundaries. This is empirically useful

for the problem of dense matching in SEM stereo pairs, especially since very fine details

has to be preserved to obtain a more accurate 3D reconstruction.

Explicit formulation of the median filtering in Eq. 5.8 can be approximated by

E(u,v) =
∑
i,j

{pD(I1(i, j)− I2(i+ ui,j, j + vi,j))

+ λ[pS(ui,j − ui+1,j) + pS(ui,j − ui,j+1) + pS(vi,j − vi+1,j) + pS(vi,j − vi,j+1)]}

+ λN
∑
i,j

∑
(i′,j′)∈Ni,j

(|ui,j − ui′,j′|+ |vi,j − vi′,j′|)

(5.9)

in which Ni,j is the neighborhood centered at (i, j) and λN is the weight determining the

contribution of the non-local weighted median term. Due to difficulty of optimization of

Eq. 5.9 when having large spatial terms, the objective function can be relaxed using a

set of auxiliary horizontal (û) and vertical (v̂) flow field components:

E(u,v, û, v̂) =
∑
i,j

{pD(I1(i, j)− I2(i+ ui,j, j + vi,j))

+ λ[pS(ui,j − ui+1,j) + pS(ui,j − ui,j+1) + pS(vi,j − vi+1,j) + pS(vi,j − vi,j+1)]}

+ λC(||u− û||2 + ||v − v̂||2)

+ λN
∑
i,j

∑
(i′,j′)∈Ni,j

(|ûi,j − ûi′,j′ |+ |v̂i,j − v̂i′,j′ |)

(5.10)
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where λC is a scalar weight which penalizes the contribution of differences between the

auxiliary and main flow fields. The current formulation with L1 minimization is in close

accordance with median filtering [181]. Assuming the above explicit representation of

median filtering as part of the energy minimization functional, more improvement can be

achieved by employing a weighted approach based on the approximate classification of

the pixels in the neighborhood. In the non-local term, given a pixel and knowing which

pixels in the neighborhood belong to the same surface, higher weights can be assigned

while for the other pixels weights are lower [35]. In this manner, the non-local term in

Eq. 5.10 is replaced with:

∑
i,j

∑
(i′,j′)∈Ni,j

wi
′,j′

i,j (|ûi,j − ûi′,j′|+ |v̂i,j − v̂i′,j′|) (5.11)

The weights wi
′,j′

i,j can be approximated by taking the spatial distance, color-value

distance and occlusion states into account ([168, 213, 202]):

wi
′,j′

i,j ∝ exp{−|i− i
′|2 + |j − j|2

2σ2
1

− |I(i, j)− I(i′, j′)|2

2σ2
2nc

}o(i
′, j′)

o(i, j)
(5.12)

where I is the color vector in the Lab color space, nc is the number of color channels,

σ1 = 7 and σ2 = 7. The occlusion variable o(i, j) is defined as:

o(i, j) = exp{−d
2(i, j)

2σ2
d

− (I(i, j)− I(i+ ui,j, j + vi,j))
2

2σ2
e

} (5.13)

where d(i, j) is the one-sided divergence function (only negative values, and positives

considered as zero). This variable is near zero for occluded pixels while close to one

in non-occluded regions. The parameters σd and σe are set to 0.3 and 20, respectively

according to [168]. Following the work of [111], an approximate solution for the auxiliary

flow filed components, û and v̂, can be found for all of the pixels.

Full implementation of the above requires high computational power. A simple modi-

fication can reduce the computational need immensely. Since the weighted formulation is

designed to overcome the negative impacts of over-smoothing boundaries in the process
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of optical flow estimation while the estimates in the uniform regions are very accurate,

different methodologies can be applied to ensure an accurate solution while demanding

less computational power. Using a Sobel edge detector and having the current estimate

of optical flow, motion boundaries can be detected and then dilated to determine the flow

boundary regions. In these regions the weighted formulation with a 15×15 neighborhood

is applied while in non-boundary regions, a 5 × 5 un-weighted approach is taken. This

will reduce the computational time drastically.

Optimizing Eq. 5.10 will result in the flow field representing how the pixels moved

between the micrographs. Given that the input micrographs are rectified, the vertical

components of the flow fields are negligible in comparison to the horizontal components.

In fact, the energy of the vertical disparity map is less than 1% of that of horizontal

disparity. Considering this, the vertical disparity map is disregarded for the rest of the

steps.

5.2.5 Disparity Refinement by Weighted Median Filter

As can be seen from the micrographs used in the current work, the level of detail can

be very high due to presence of many microscopic objects in the samples. This can be

mainly problematic since the variation of the size is also large. A great representative

is the Ash sample in which objects of various sizes as well as regions with different

textures are present. This cannot be fully recovered by the previous steps and therefore,

our goal of a more truthful 3D reconstruction can be compromised. However, this can

be greatly remedied by using the original images for guiding towards a more accurate

correspondence. Here, we propose to use weighted median filtering as means for error

correction. In this manner, the original images serve as guidance for a more accurate

filtering of the computed disparity map.

Weighted median filter, as is obvious from the name, aims to replace the image pixels

with weighted median of the neighborhood pixels within a local window [33, 123]. As-

suming image I and the corresponding feature map f , and pixel p in image I located at

the center of a local window R(p) with radius r, for each pixel q ∈ R(p) a weight wpq
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will be assigned which is a representative of the affinity of the two pixels in the feature

map f . This can be represented as

wpq = g(f(p), f(q)) (5.14)

where g is the influence function (Gaussian, reciprocal, cosine, etc.) [217]. Given n =

(2r+ 1)2 as the number of pixels in the local window R(p), the value and weight element

os all n pixels can be expressed as {(I(q), wpq)}. After sorting values in an ascending

order, the weighted median operator returns the new pixel p∗ such as:

p∗ = min k s.t.

k∑
q=1

wpq ≥
1

2

n∑
q=1

wpq. (5.15)

which means that the sum of corresponding weights for all pixels before p∗ should be

almost half the sum of all weights. It should be noted that in this formulation, feature

map f determines the weights.

For our work, use of weighted median filtering is considered for achieving a more accu-

rate correspondence. Given the computed disparity map from the previous step, and also

having the first micrograph from each image set that is used for optical flow estimation

as the feature map, the disparity map is filtered using the weighted median filter. Even

though the straightforward implementation of the method is simple, it can be very time

consuming due to spatially varying weights and the median property. [217] proposed the

use of joint-histogram with median tracking and necklace table data structure for fast

implementation of the weighted median filter. Employing this approach, a more detailed

disparity map can be achieved which results in a higher fidelity 3D reconstruction.

5.2.6 Depth Estimation

Stereo rectification transforms the images in a manner in which the displacements will

be grossly concentrated in the horizontal direction. This greatly simplifies the process

of depth estimation. This is especially useful for the case of 3D reconstruction of SEM

images since the tilt angles are very small with high amount of overlap between stereo
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h = d.p

2 sin(θ2)

Figure 5.2: Relationship between the estimated height (h) and the computed horizontal
disparity (d) using the pixel size in sample units (p) and the total tilt angle (θ).

image pairs. For more general problems like large scale multiple view stereo (MVS), the

proposed technique is not directly applicable and more sophisticated methods are needed

[176, 190, 65].

The horizontal disparity computed from the previous step, can be utilized for esti-

mating the depth of the individual pixels contained in the images. This requires several

parameters to be known: tilt angle, magnification and size of each pixel in sample units.

Figure 5.2 shows the relationship between the computed horizontal disparity and the

height for a few sample points. This can be represented using a simple trigonometric

equation [163, 183, 203]:

h =
d.p

2 sin( θ
2
)

(5.16)

which uses the computed horizontal disparity d, pixel size in sample units (p) and the

total tilt angle (θ) to estimate the height (h).

5.3 Results & Discussions

Assessing the performance of the proposed method is done in several steps both qual-

itatively and quantitatively. Using a Hitachi S-4800 field emission scanning electron

microscope (FE-SEM), the micrographs of the five sample sets (Arabidopsis Anther 1,

Arabidopsis Anther 2, Graphene, Pseudoscorpion and Ash) are captured. The device is

equipped with computer controlled 5 axis specimen stage which enables movements along
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three coordinate axis as well as tilting and rotation. The process of image acquisition

is done in a controlled manner by an expert with manual adjustments of focus and re-

centering when needed. Between the two views acquired for each sample, only the tilt

angle is changed while the distance between the specimen stage and the detectors as well

as zooming factor are kept constant. In order to keep the image acquisition sessions con-

sistent, the tilt angle between micrographs of each set is set to 7◦. However, similar tilt

angles in close range would produce the same results as evidenced by our previous exper-

iments. One should note that the amount of overlap between images is a key factor in a

more accurate 3D reconstruction. Keeping the tilt angle small, as well as re-centering the

sample after tilting the specimen stage will ensure a more accurate and robust matching

and therefore result in a more truthful reconstruction.

The first step of the proposed approach consists of finding distinctive feature points

in the two input micrographs from each set to be used for stereo rectification. Given the

initial SIFT feature points, SIFT descriptors are computed as described in Section 2.3.

This is followed by putative matching of the SIFT descriptors considering naive nearest

neighbor search. Since it is assumed that SIFT descriptors capture information about

the neighborhood of each feature point, putative matching produces reasonable number

of correct matches. However, it cannot be expected to have a completely accurate match-

ing between feature points due to noise and also similarities in textures contained in the

input images. Therefore, one should find a reasonable transform between the matching

points that satisfies some error criteria for the majority of matched features. In our work,

without going into much detail as this subject is a very well-studied concept in computer

vision, a variant of random sample consensus (RANSAC), namely a contrario RANSAC

(ORSA), is used in order to find correct matches that satisfy a homography transform

between the two images. This is followed by formulating the Sampson’s error to be used

for rectifying the input pair in order to have horizontally concentrated matchings. This

step is necessary for the process of dense matching needed for high quality 3D recon-

struction. In sparse feature-based approaches used for 3D reconstruction of microscopic

samples [186, 187], computation of fundamental matrix and the subsequent projective
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Table 5.2: Rectification results: number of SIFT points found in each input image (rows
1 and 2), number of matching points after a contrario RANSAC (row 3), initial and final
rectification errors from before and after the quasi-Euclidean rectification (rows 4 and 5).
As can be seen, despite careful image acquisition, the initial rectification errors are large.

Arabidopsis Anther 1 Arabidopsis Anther 2 Graphene Pseudoscorpion Ash

im.1 # SIFT keypoints 783 981 2089 195 1633
im.2 # SIFT keypoints 658 893 2488 65 1652
ORSA # SIFT matches 214 268 487 18 418

initial rect. err. (pix) 2.393 6.910 14.055 1.223 2.766
final rect. err. (pix) 0.802 0.425 0.277 0.971 0.472

transformation is computationally efficient. This is due to small number of matching

points in comparison to the total number of pixels in the images. However, having the

dense matching for all the pixels in the images requires specific configurations. Rectify-

ing the input pair simplifies the problem of 3D point cloud generation. In this case, the

need for computing the fundamental matrix and projective transformation using all of

the matching points is eliminated. Table 5.2 summarizes the result of the rectification

process used for this study for all of the sample sets. The first and second row in the

table represents the number of individual SIFT feature points found in the input images.

This is followed in the third row by the number of true matches after putative nearest

neighbor matching and ORSA outlier elimination. Even though this number consists of

a small portion of the initial matches, however, for the purpose of stereo rectification is

enough. The number of initial and final matches is lower for the Pseudoscorpion set due

to lower amount of variations and texture in the images of the set. The table continues

with the initial and final rectifications errors obtained using the quasi-Euclidean stereo

rectification process. Having a more horizontally-concentrated matching between image

pixels will ensure more accurate and robust 3D reconstruction.

The rectification step is followed by optical flow estimation to determine the dense

matching between individual image pixels in the image pair. Figure 5.3 shows the results

of optical flow estimation. For better visualization of the effects of dense matching,

the difference maps are also displayed. The first row shows the initial difference map

between the input images of the pair. The second row shows the estimated optical flows

for compensating the movements of individual pixels in the two images. The computed
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flow is color-coded, with red representing positive values and blue representing negative

values. Utilizing the computed optical flow estimates, the first image of the pair can

be warped to generate the second image. The difference maps between the warped first

image and the second image of each pair are excellent representatives of the performance

of the matching procedure. These are shown in the third row of Figure 5.3. Inspecting

the computed optical flows reveals very important properties of the image matching that

is required here. Image registration as an example of image matching tries to find the

correspondence between pixels of two images [16, 18]. However, the general formulation

assumes that the matching points are all laid on the same plane. This is not the case

for many computer vision problems, optical flow estimation included. In such cases the

computed correspondence must be discontinuity preserving. In order words, an image as a

projective depiction of a scene may contain several objects which can move independently

and therefore, the computed flow patterns should account for that. Having a rectified

stereo pair as input to the optical flow estimation approach results in a horizontally-

concentrated flow estimate, as expected. Our experiments show that the energy contained

in the vertical component of optical flow is less than 1% of the horizontal component

which is ideal for an accurate reconstruction. Therefore, for 3D reconstruction, only the

horizontal component is used as the disparity map.

Even though the employed optical flow approach produces highly accurate results,

due to lack of color in the initial SEM images, the results may suffer from blurred edges.

This is mainly problematic in highly complex samples used here, Ash for example. To

ensure a more accurate estimation, further post-processing is done using weighted median

filtering as described in Section 2.5. Using the first image as guidance, because the optical

flow is computed from the first to the second image in the pair, the disparity map is

filtered taking advantage of weighted median filtering. Figure 5.4 shows the effects of the

employed post-processing filtering on a portion of the Pseudoscorpion and Ash disparity

maps. While the initial disparity maps has blurred edges and bumpy appearances, the

result of weighted median filtering is more sharp and accurate. Moreover, more detail is

preserved in the resulted disparity map as can be seen from the presented images.
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Figure 5.4: Effects of weighted median filtering on the horizontal disparity map: the first
input micrograph that is used as guidance (left column), before (center column) and after
(right column) disparity refinement. Despite inclusion of non-local term in the optical
flow energy functional, the outcome can be improved greatly by adding an additional
weighted median filtering step.

For a more comprehensive analysis, the proposed dense matching approach is com-

pared with several other methods previously used in the literature for dense matching and

subsequently 3D reconstruction. Sparse feature-based approaches track the movements

of distinct feature points in the input images in order to compute the fundamental matrix

and projective transformation [186, 187]. To generate a dense disparity map, similar to

that of created by our approach for a better comparison of the performance, the sparse

disparity values are interpolated employing a Delaunay triangulation-based interpolation

method. As for dense matching schemes, the works of [85] and [116] are good examples.

While the first one works based on the pixels correspondence, the later extends a similar

idea to matching of dense SIFT descriptors.

Figures 5.5 and 5.6 display the disparity maps computed using the above-mentioned

methods as well as the proposed approach for the Graphene and Ash sample sets, re-
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Method of [187] + interpolation

Method of [85]

Method of [116]

Proposed approach

Figure 5.5: Comparison of the results for Graphene: The first row is the overall as well
as a zoomed region of the computed disparity map using the state-of-the-art method of
[187] which uses sparse feature-based matching approach and a contrario RANSAC for
outlier removal. The dense disparity map is created by scattered data interpolation of
the sparse disparity values. The second row shows the result of Horn/Schunck optical
flow estimation ([85]), which provides a better estimation of the disparity map than that
of [187]. The third row shows the result of dense feature matching proposed in [116]
which uses dense SIFT features as well as factor graph representation of the matching
energy functional optimized by loopy belief propagation. Even though relatively better
than [85], the result still suffers from blurred edges. The result of the proposed method is
presented in the fourth row. In comparison to the state-of-the-art, the proposed approach
generates a sharper and more accurate disparity map.
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Method of [187] + interpolation

Method of [85]

Method of [116]

Proposed approach

Figure 5.6: Comparison of the results for Ash: The first row is the overall as well as
a zoomed region of the computed disparity map using the state-of-the-art method of
[187] which uses sparse feature-based matching approach and a contrario RANSAC for
outlier removal. The dense disparity map is created by scattered data interpolation of
the sparse disparity values. The second row shows the result of Horn/Schunck optical
flow estimation ([85]), which provides a better estimation of the disparity map than that
of [187]. The third row shows the result of dense feature matching proposed in [116]
which uses dense SIFT features as well as factor graph representation of the matching
energy functional optimized by loopy belief propagation. Even though relatively better
than [85], the result still suffers from blurred edges. The result of the proposed method is
presented in the fourth row. In comparison to the state-of-the-art, the proposed approach
generates a sharper and more accurate disparity map.
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spectively. In each figure, the left column shows the overall disparity map while the right

column is a zoomed view for a better visual comparison of the various techniques. Close

inspection of the provided results displays the superiority of the proposed approach. As

expected, the outcome of the sparse feature-based approach is highly blurred near edges

with significant loss of details presented in the images. Even tough such techniques are

mainly used with more than two input images, the performance is the same as evident

from the results. In contrast, dense matching approaches produce more accurate results.

Using the modern implementation of the method of [85] provided by [182] a more accu-

rate disparity map is generated. In the results of the method, more details are present

and discontinuities are better preserved. However, in cases of having larger displacements

near the margins of the input images (left side of the Graphene results) the estimated

optical flow is not as accurate as the sparse feature-based approach. Using the dense de-

scriptor matching scheme in the work of [116], this is mostly resolved. In this technique,

at first two 128-dimensional dense SIFT descriptor image of both the first and second

image in the pair are created. To compute the matching, a factor graph representation of

the specifically defined energy functional is introduced and the process of optimization is

done using loopy belief propagation. Employing the dense descriptor matching method-

ology more accurate results can be achieved. The last row in Figures 5.5 and 5.6 is the

disparity result using the proposed approach. Employing the proposed approach, higher

levels of details can be reached in the resulted disparity maps. With higher accuracy in

preserving the discontinuities a more truthful reconstruction can be made. This is more

evident in the samples with higher complexity level, Ash sample set for example. As

shown in Figure 5.6, the proposed approach can recover disparity values even for smaller

objects in the images, while in contrast, the other methods presented here cannot due to

high amount of blur around edges and boundaries.

Having the height estimate for each point, a dense 3D point cloud can be generated

and further used for 3D surface reconstruction. To eliminate the effects of smoothing

introduced by general purpose mesh generating toolsets, similar to that of used in Mesh-

Lab [127], Delaunay triangulation is done by utilizing the image grid as the set of mesh
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nodes. The triangular mesh nodes are then transformed from the two dimensions of the

image plane to the three dimensions of the model using the computed height estimates.

This practically eliminates the smoothing effects which generally happen near the edges

of the objects and in areas that contain sudden jumps due to sharp changes in the depth

estimate. Using simple MATLAB scripts, the generated 3D surface can be transformed

and saved as standard STL files which can be later used for further mesh modification

and processing using more specialized software. Use of edge aware mesh smoothing pro-

cedures can be considered in order to have a more pleasing appearance without loosing

details of the edges and sudden changes of depth. Figure 5.7 shows 3D red-cyan anaglyphs

generated by combining the two rectified stereo views of the microscopic samples as well

as the solid 3D models created using Meshmixer [171]. The generated models can also

be sent out for 3D printing as the ultimate means for creating a tangible representation

of the complex microscopic structure. Figure 5.8 (a) shows one image from Ash sample,

while (b) shows another view of the 3D solid model created using the computed disparity

estimates and modified using MeshMixer. Finally, (c) is an image captured from the 3D

printed model.

5.4 Conclusions

In this chapter, a novel and accurate approach is introduced for high fidelity 3D recon-

struction of highly complex microscopic samples. This is an extension to the framework

proposed in the previous chapter. In the proposed methodology, multi-view SEM micro-

graphs from two different view-points are captured using a Hitachi S-4800 field emission

scanning electron microscope (FE-SEM). The micrographs are acquired with 7◦ tilt angle

differences made possible by the provided computer controlled 5 axis specimen stage. The

image acquisition is then followed by one stage of pre-processing which consists of four

steps: a) sparse SIFT feature detection/description, b) nearest neighbor search for find-

ing the putative sparse matching, c) a contrario RANSAC for outlier removal and finally

d) quasi-Euclidean stereo rectification. This step is necessary due to the need for high
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quality dense correspondence required for accurate 3D reconstruction of highly complex

samples used here. The pre-processing stage is followed by dense matching by employing

non-local based optical flow estimation. Using this technique, a highly accurate estimate

of dense correspondence can be achieved. To ensure a more accurate disparity map as

well as eliminating blurred edges, a post-processing filtering step using weighted median

filtering is done which uses the first image in each pair as the guidance. Finally, the

disparity map is used to generate the 3D point cloud of the microscopic sample. The

3D point cloud is later used for high quality surface mesh generation. Quantitative and

qualitative comparisons reveal the superiority of the proposed method to the state-of-the-

art sparse feature-based techniques used for 3D surface reconstruction of SEM images.

Moreover, the produced results are experimentally proven to be extremely accurate and

suitable for 3D printing, as evident by the sample produced.
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Chapter 6

Conclusions and Future Works

In this dissertation the problem of image matching and a vast range of its applications

are discussed and investigated. Starting with Chapter 1, the thesis provides a general

definition of the problem and then proceeds to dive deeper into various forms of image

matching. Chapter 1 is concluded with brief introduction of the main topics covered in

the rest of the thesis. Chapter 2 aims to investigate a few biomedical image processing

problem in which the concept of image matching is present in their very core. Start-

ing with the problem of slice interpolation, a new deformable image registration-based

approach is proposed for accurate slice interpolation of volumetric MRI and CT scans.

This is a necessary step since the resolution of the captured volumetric scans differ along

different axes. Employing the proposed slice interpolation approach will enable a more

accurate 3D reconstruction of the volumetric scans. Chapter 2 is continued with inves-

tigation of another biomedical image processing problem which can be efficiently solved

by image matching. Retinal Optical Coherence Tomography (OCT) imaging as a highly

regarded field has attracted many researcher around the world. In the last section of

Chapter 1, a new image matching-based approach is proposed which takes advantage

of Robust Principle Component Analysis (RPCA) as well as rigid image registration for

speckle noise reduction on retinal OCT images. One bottleneck encountered when dealing

with deformable image registration approaches is in regard to the computational com-

plexity and demand of such techniques since the algorithm tries to estimate displacement

vectors for all of the pixels contained in the input images. This will be more problematic

when having very high resolution images for matching. To remedy this, a new triangular

mesh-based registration approach is proposed in section 3 of Chapter 2.

The main focus in the dissertation is put on the applications of various image matching

techniques for the problem of 3D surface reconstruction, especially microscopic surfaces,
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with use of Scanning Electron Microscope (SEM) as means for capturing high quality

2D micrographs from simple and complex microscopic samples. The literature of used

approaches for this purpose can be categorized into three major classes: 1) single-view,

2) multi-view, and 3) hybrid strategies. In single-view approaches, using varying lighting

(electron beam) directions on a single perspective, a group of 2D SEM micrographs are

captured and utilized for 3D SEM surface modeling. In multi-view strategies, on the other

hand, a set of 2D SEM images from different perspectives assists the 3D SEM surface

reconstruction process. The hybrid mechanisms try to combine single-view and multi-

view algorithms to restore a 3D shape model from 2D SEM images. The class of multiview

methods can be further divided into to categorizes: a) sparse feature-based techniques,

and b) dense pixel-based approaches. While methods from the first class are employed

to establish a set of robust matches between an image pair or a set of images based

on sparsely placed distinct feature-points, dense multi-view techniques try to discover

matches for all points in the images. These matches along with other computational

methods will then be used to accurately estimate the projective geometry and 3D surface

models. Chapter 3 aims to investigate the use of sparse feature-based approaches for

the problem of 3D surface reconstruction of microscopic samples. Employing four well-

known, widely used feature detector/descriptor approaches, namely SIFT, SURF, BRIEF

and ORB, comprehensive comparisons are provided and the performance of the methods

are investigated. In all of the cases, SIFT performs better than the others, with SURF

being the next best method. However, a close inspection of the final results reveals the

significant shortcomings of sparse feature-based approaches. Unlike general purpose 3D

reconstruction problems, in SEM, the level of detail contained in the micrographs can

vary drastically between different microscopic samples. Therefore a 3D reconstruction

approach is expected to be able to handle such variations and produce a reconstruction

with very high accuracy. Using sparse feature-based approaches result in a very smoothed

reconstruction of the microscopic surface with all the fine details missing. Moreover,

the performance is not consistent in all the regions of the input micrographs. This is

mainly due to having various levels of details in different regions of the images. This
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can be problematic when working with samples that contains very uniform regions. In

such cases the first component for the sparse feature-based approaches, feature detection,

cannot find enough number of matches for accurate estimation of fundamental matrix and

projective transformations. Therefore the need for more robust and accurate approaches

is of high importance.

Building on the concept of feature-based surface reconstruction, Chapter 4 introduces

a new framework in which not only distinct feature but instead all the pixels of the in-

put images are used for finding the appropriate correspondence and 3D reconstruction.

The proposed framework works based on sparse-dense correspondence of features/pixels

present in stereo SEM micrographs. The first stage of the framework uses SIFT fea-

tures/descriptors as well as naive nearest neighbor (NN) search and a contrario RANdom

SAmple Consensus (RANSAC) for quasi-Euclidean stereo rectification. This is followed

by used of dense SIFT descriptors in a specifically designed matching energy functional

represented as a factor graph and optimized by taking advantage of loopy belief propa-

gation in order to find dense correspondence between all the pixels in the images. Due to

rectification, the disparities are highly concentrated along the horizontal direction which

makes the process of 3D point cloud generation very easy. The proposed framework

outperforms sparse feature-based approaches greatly both in terms of accuracy and reli-

ability. This framework is furthered improved in Chapter 5 by employing a more robust

and accurate matching scheme as well as disparity refinement procedure. This is espe-

cially useful when dealing with microscopic samples with higher level of details. In such

cases, one should ensure that boundaries of the objects contained in the micrographs are

preserved in the process of matching. Not only that, but also, the improved framework

will enable a more accurate reconstruction which can lead to higher fidelity 3D models

that can be sent out for 3D printing as evident by the sample created as a tangible means

of representations.
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Future Research

Micrograph Pre-Processing

Here, a highly constrained optimization approach is employed for dense matching with

custom regularization terms which minimizes the effects of image distortions. However,

in special cases it may be required to pre-process the input micrographs for a better

matching. These pre-processing steps range from edge-preserving noise reduction and

blur removal to contrast enhancement. This is more necessary when having more than

two views.

Different Dense Descriptors for Dense Correspondence

The first assumption in the majority of the methods proposed in the literature for dense

matching and optical flow estimation is the brightness constancy during movements of

pixels between images of the sequence. However, this is not always the case for SEM

micrographs. One solution, as pursued in Chapter 4, is to use structural descriptors rather

than pixels for estimating the matching. Use of dense descriptors for dense matching and

optical flow estimation has been investigated in our previous works [14, 11] using various

dense descriptors, such as Leung-Malik (LM) filter bank [108], Gabor filter bank [67],

Schmid filter bank [170], Root Filter Set (RFS) filters, Steerable filters [64], Histogram of

Oriented Gradients (HOG) [44] and Speeded Up Robust Features (SURF) [24]. The same

approaches can be considered here using the above mentioned dense descriptors with the

possibility of newer descriptors such as DAISY [190] which is proven to be useful for high

accuracy dense matching.

Occlusion Handling

Occlusion handling as an interesting and challenging problem is a widely studied problem

in the computer vision community [211, 202, 207]. This arises as a result of movements

of objects in the scene or the change of imaging viewpoint. This is more problematic

in case of large displacements of objects between frames in the image sequence which is

largely the case for general purpose optical flow estimation or stereo matching. However,
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for the problem of 3D reconstruction of microscopic samples using SEM micrographs, the

problem is more relaxed. On one hand, the SEM micrograph acquisition is done in a very

organized manner with careful sample preparation and controlled imaging procedures.

On the other hand, unlike the general optical flow or stereo matching, the amount of

displacements can be adjusted by manual manipulation of the specimen sample. This,

as mentioned before, does not have a negative impact on the subsequent depth estima-

tion since it will not alter the relative disparity between the matching points and may

only elevate or decrease the mean depth of the whole microscopic sample. Moreover

it should be noted that we have limitations on the possible tilt angles dictated by the

SEM imaging system. However, in case of multiview stereopsis and/or for more complex

microscopic samples, by taking occlusion handling procedures into account, a more accu-

rate reconstruction can be achieved. Examples of such techniques can be seen in Figure

6.1 using the well-known Semi-Global stereo [84] and Patch-Match stereo [29] methods.

While Semi-Global approach uses a fronto-parallel assumption for the disparity support

windows, Patch-Match takes advantage of a slanted support window for a more accurate

reconstruction. However, both can be used in order to detect occluded regions in the

input micrographs. More extensive evaluations are left for future research. Moreover,

incorporating the mesh generation procedures in the process of depth estimation can be

considered in the future [216].

Hybrid Approaches: Combining SFM & SFS

In the class of single view 3D reconstruction approaches, images from a single viewpoint

but with various lighting conditions are captured and used for the purpose of reconstruc-

tion. The methods in this class have been previously used for 3D reconstruction from

SEM images [103, 48, 143, 153]. However, due to difficulty in generating SEM micro-

graphs under different illumination directions, they achieved moderate success. Even

though several hybrid approaches have been introduced in the literature combining SFS

with SFM [45], the advent of modern SFS algorithms can improve the performance of

3D reconstruction approaches. Figure 6.2 shows a sample result produced using only one
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Figure 6.1: Stereo matching results for Graphene (first row) and Ash (second row) micro-
graph sets using Semi-Global stereo (left) and Patch-Match stereo (right) with occlusion
detection.

Figure 6.2: Shape, illumination, and reflectance estimation from shading using only one
image from the Copper Bar set by using the method proposed in [22]. From left to right,
the initial image as well as shape, normals, reflectance, shading and illumination.

image from the Copper Bar micrograph set by taking advantage of the work of Barron

and Malik [22]. More rigorous analysis and investigations on the use of such techniques

will benefit the field greatly.
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